IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v55y2007i2p378-394.html
   My bibliography  Save this article

An Efficient Trajectory Method for Probabilistic Production-Inventory-Distribution Problems

Author

Listed:
  • Miguel A. Lejeune

    (Tepper School of Business, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213)

  • Andrzej Ruszczyński

    (Department of Management Science and Information Systems, Rutgers University, 94 Rockefeller Road, Piscataway, New Jersey 08854)

Abstract

We consider a supply chain operating in an uncertain environment: The customers’ demand is characterized by a discrete probability distribution. A probabilistic programming approach is adopted for constructing an inventory-production-distribution plan over a multiperiod planning horizon. The plan does not allow the backlogging of the unsatisfied demand, and minimizes the costs of the supply chain while enabling it to reach a prescribed nonstockout service level. It is a strategic plan that hedges against undesirable outcomes, and that can be adjusted to account for possible favorable realizations of uncertain quantities. A modular, integrated, and computationally tractable method is proposed for the solution of the associated stochastic mixed-integer optimization problems containing joint probabilistic constraints with dependent right-hand side variables. The concept of p -efficiency is used to construct a finite number of demand trajectories, which in turn are employed to solve problems with joint probabilistic constraints. We complement this idea by designing a preordered set-based preprocessing algorithm that selects a subset of promising p -efficient demand trajectories. Finally, to solve the resulting disjunctive mixed-integer programming problem, we implement a special column-generation algorithm that limits the risk of congestion in the resources of the supply chain. The methodology is validated on an industrial problem faced by a large chemical supply chain and turns out to be very efficient: it finds a solution with a minimal integrality gap and provides substantial cost savings.

Suggested Citation

  • Miguel A. Lejeune & Andrzej Ruszczyński, 2007. "An Efficient Trajectory Method for Probabilistic Production-Inventory-Distribution Problems," Operations Research, INFORMS, vol. 55(2), pages 378-394, April.
  • Handle: RePEc:inm:oropre:v:55:y:2007:i:2:p:378-394
    DOI: 10.1287/opre.1060.0356
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1060.0356
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1060.0356?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ioannis Paschalidis & Yong Liu & Christos Cassandras & Christos Panayiotou, 2004. "Inventory Control for Supply Chains with Service Level Constraints: A Synergy between Large Deviations and Perturbation Analysis," Annals of Operations Research, Springer, vol. 126(1), pages 231-258, February.
    2. Stephen C. Graves & Sean P. Willems, 2000. "Optimizing Strategic Safety Stock Placement in Supply Chains," Manufacturing & Service Operations Management, INFORMS, vol. 2(1), pages 68-83, June.
    3. van der Heijden, Matthieu, 2000. "Near cost-optimal inventory control policies for divergent networks under fill rate constraints," International Journal of Production Economics, Elsevier, vol. 63(2), pages 161-179, January.
    4. Fare, Rolf & Grosskopf, Shawna, 2000. "Slacks and congestion: a comment," Socio-Economic Planning Sciences, Elsevier, vol. 34(1), pages 27-33, March.
    5. A. Charnes & W. W. Cooper & G. H. Symonds, 1958. "Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil," Management Science, INFORMS, vol. 4(3), pages 235-263, April.
    6. Patrizia Beraldi & Andrzej Ruszczyński, 2002. "The Probabilistic Set-Covering Problem," Operations Research, INFORMS, vol. 50(6), pages 956-967, December.
    7. Chen, Frank Y. & Krass, Dmitry, 2001. "Inventory models with minimal service level constraints," European Journal of Operational Research, Elsevier, vol. 134(1), pages 120-140, October.
    8. Gabriel R. Bitran & Horacio H. Yanasse, 1984. "Deterministic Approximations to Stochastic Production Problems," Operations Research, INFORMS, vol. 32(5), pages 999-1018, October.
    9. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    10. F. Fumero & C. Vercellis, 1999. "Synchronized Development of Production, Inventory, and Distribution Schedules," Transportation Science, INFORMS, vol. 33(3), pages 330-340, August.
    11. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2004. "Dynamic Programming Approximations for a Stochastic Inventory Routing Problem," Transportation Science, INFORMS, vol. 38(1), pages 42-70, February.
    12. Cooper, William W. & Deng, H. & Huang, Zhimin & Li, Susan X., 2004. "Chance constrained programming approaches to congestion in stochastic data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 155(2), pages 487-501, June.
    13. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Lejeune, 2012. "Pattern definition of the p-efficiency concept," Annals of Operations Research, Springer, vol. 200(1), pages 23-36, November.
    2. Xiao Liu & Simge Küçükyavuz, 2018. "A polyhedral study of the static probabilistic lot-sizing problem," Annals of Operations Research, Springer, vol. 261(1), pages 233-254, February.
    3. Lejeune, Miguel A. & Shen, Siqian, 2016. "Multi-objective probabilistically constrained programs with variable risk: Models for multi-portfolio financial optimization," European Journal of Operational Research, Elsevier, vol. 252(2), pages 522-539.
    4. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    5. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    6. Lejeune, Miguel & Noyan, Nilay, 2010. "Mathematical programming approaches for generating p-efficient points," European Journal of Operational Research, Elsevier, vol. 207(2), pages 590-600, December.
    7. Yugang Yu & Chengbin Chu & Haoxun Chen & Feng Chu, 2012. "Large scale stochastic inventory routing problems with split delivery and service level constraints," Annals of Operations Research, Springer, vol. 197(1), pages 135-158, August.
    8. Yu, Y. & Chu, C. & Chen, H.X. & Chu, F., 2010. "Linearization and Decomposition Methods for Large Scale Stochastic Inventory Routing Problem with Service Level Constraints," ERIM Report Series Research in Management ERS-2010-008-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    9. Masoud Esmaeilikia & Behnam Fahimnia & Joeseph Sarkis & Kannan Govindan & Arun Kumar & John Mo, 2016. "Tactical supply chain planning models with inherent flexibility: definition and review," Annals of Operations Research, Springer, vol. 244(2), pages 407-427, September.
    10. Miguel A. Lejeune, 2012. "Pattern-Based Modeling and Solution of Probabilistically Constrained Optimization Problems," Operations Research, INFORMS, vol. 60(6), pages 1356-1372, December.
    11. Masoud Esmaeilikia & Behnam Fahimnia & Joeseph Sarkis & Kannan Govindan & Arun Kumar & John Mo, 2016. "A tactical supply chain planning model with multiple flexibility options: an empirical evaluation," Annals of Operations Research, Springer, vol. 244(2), pages 429-454, September.
    12. Zhang, Dali & Xu, Huifu & Wu, Yue, 2009. "Single and multi-period optimal inventory control models with risk-averse constraints," European Journal of Operational Research, Elsevier, vol. 199(2), pages 420-434, December.
    13. Zheng, Xiaojin & Wu, Baiyi & Cui, Xueting, 2017. "Cell-and-bound algorithm for chance constrained programs with discrete distributions," European Journal of Operational Research, Elsevier, vol. 260(2), pages 421-431.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noordhoek, Marije & Dullaert, Wout & Lai, David S.W. & de Leeuw, Sander, 2018. "A simulation–optimization approach for a service-constrained multi-echelon distribution network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 292-311.
    2. M A Lejeune, 2008. "Preprocessing techniques and column generation algorithms for stochastically efficient demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1239-1252, September.
    3. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    4. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    5. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    6. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Li, Tianqi & Liu, Wenqian, 2023. "Optimizing a shared freight and passenger high-speed railway system: A multi-commodity flow formulation with Benders decomposition solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 1-31.
    7. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    8. Yugang Yu & Chengbin Chu & Haoxun Chen & Feng Chu, 2012. "Large scale stochastic inventory routing problems with split delivery and service level constraints," Annals of Operations Research, Springer, vol. 197(1), pages 135-158, August.
    9. Gianpiero Canessa & Julian A. Gallego & Lewis Ntaimo & Bernardo K. Pagnoncelli, 2019. "An algorithm for binary linear chance-constrained problems using IIS," Computational Optimization and Applications, Springer, vol. 72(3), pages 589-608, April.
    10. Jin-Hwa Song & Martin Savelsbergh, 2007. "Performance Measurement for Inventory Routing," Transportation Science, INFORMS, vol. 41(1), pages 44-54, February.
    11. Rashed Khanjani Shiraz & Madjid Tavana & Hirofumi Fukuyama, 2021. "A joint chance-constrained data envelopment analysis model with random output data," Operational Research, Springer, vol. 21(2), pages 1255-1277, June.
    12. Liu, Kanglin & Li, Qiaofeng & Zhang, Zhi-Hai, 2019. "Distributionally robust optimization of an emergency medical service station location and sizing problem with joint chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 79-101.
    13. Sonntag, Danja R. & Schrotenboer, Albert H. & Kiesmüller, Gudrun P., 2023. "Stochastic inventory routing with time-based shipment consolidation," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1186-1201.
    14. Cooper, William W. & Deng, H. & Huang, Zhimin & Li, Susan X., 2004. "Chance constrained programming approaches to congestion in stochastic data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 155(2), pages 487-501, June.
    15. Yu, Y. & Chu, C. & Chen, H.X. & Chu, F., 2010. "Linearization and Decomposition Methods for Large Scale Stochastic Inventory Routing Problem with Service Level Constraints," ERIM Report Series Research in Management ERS-2010-008-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Yu, Yugang & Chen, Haoxun & Chu, Feng, 2008. "A new model and hybrid approach for large scale inventory routing problems," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1022-1040, September.
    17. de Kok, Ton & Grob, Christopher & Laumanns, Marco & Minner, Stefan & Rambau, Jörg & Schade, Konrad, 2018. "A typology and literature review on stochastic multi-echelon inventory models," European Journal of Operational Research, Elsevier, vol. 269(3), pages 955-983.
    18. Shen, Siqian & Chen, Zhihao, 2013. "Optimization models for differentiating quality of service levels in probabilistic network capacity design problems," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 71-91.
    19. Angelos Georghiou & Daniel Kuhn & Wolfram Wiesemann, 2019. "The decision rule approach to optimization under uncertainty: methodology and applications," Computational Management Science, Springer, vol. 16(4), pages 545-576, October.
    20. Rezapour, Shabnam & Srinivasan, Ramakrishnan & Tew, Jeffrey & Allen, Janet K. & Mistree, Farrokh, 2018. "Correlation between strategic and operational risk mitigation strategies in supply networks," International Journal of Production Economics, Elsevier, vol. 201(C), pages 225-248.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:55:y:2007:i:2:p:378-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.