IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v17y2020i3d10.1007_s10287-020-00362-9.html
   My bibliography  Save this article

Optimization techniques for tree-structured nonlinear problems

Author

Listed:
  • Jens Hübner

    (HaCon Ingenieurgesellschaft mbH)

  • Martin Schmidt

    (Trier University)

  • Marc C. Steinbach

    (Leibniz Universität Hannover)

Abstract

Robust model predictive control approaches and other applications lead to nonlinear optimization problems defined on (scenario) trees. We present structure-preserving Quasi-Newton update formulas as well as structured inertia correction techniques that allow to solve these problems by interior-point methods with specialized KKT solvers for tree-structured optimization problems. The same type of KKT solvers could be used in active-set based SQP methods. The viability of our approach is demonstrated by two robust control problems.

Suggested Citation

  • Jens Hübner & Martin Schmidt & Marc C. Steinbach, 2020. "Optimization techniques for tree-structured nonlinear problems," Computational Management Science, Springer, vol. 17(3), pages 409-436, October.
  • Handle: RePEc:spr:comgts:v:17:y:2020:i:3:d:10.1007_s10287-020-00362-9
    DOI: 10.1007/s10287-020-00362-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-020-00362-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-020-00362-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacek Gondzio & Andreas Grothey, 2007. "Parallel interior-point solver for structured quadratic programs: Application to financial planning problems," Annals of Operations Research, Springer, vol. 152(1), pages 319-339, July.
    2. Blomvall, Jorgen & Lindberg, Per Olov, 2002. "A Riccati-based primal interior point solver for multistage stochastic programming," European Journal of Operational Research, Elsevier, vol. 143(2), pages 452-461, December.
    3. Jacek Gondzio & Andreas Grothey, 2009. "Exploiting structure in parallel implementation of interior point methods for optimization," Computational Management Science, Springer, vol. 6(2), pages 135-160, May.
    4. Jens Hübner & Martin Schmidt & Marc C. Steinbach, 2017. "A Distributed Interior-Point KKT Solver for Multistage Stochastic Optimization," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 612-630, November.
    5. Tamra J. Carpenter & Irvin J. Lustig & John M. Mulvey & David F. Shanno, 1993. "Separable Quadratic Programming via a Primal-Dual Interior Point Method and its Use in a Sequential Procedure," INFORMS Journal on Computing, INFORMS, vol. 5(2), pages 182-191, May.
    6. Joseph Czyzyk & Robert Fourer & Sanjay Mehrotra, 1995. "A Study of the Augmented System and Column-Splitting Approaches for Solving Two-Stage Stochastic Linear Programs by Interior-Point Methods," INFORMS Journal on Computing, INFORMS, vol. 7(4), pages 474-490, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oleg O. Khamisov, 2024. "Distributed continuous-time optimization for convex problems with coupling linear inequality constraints," Computational Management Science, Springer, vol. 21(1), pages 1-20, June.
    2. Toly Chen, 2021. "A diversified AHP-tree approach for multiple-criteria supplier selection," Computational Management Science, Springer, vol. 18(4), pages 431-453, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cosmin Petra & Mihai Anitescu, 2012. "A preconditioning technique for Schur complement systems arising in stochastic optimization," Computational Optimization and Applications, Springer, vol. 52(2), pages 315-344, June.
    2. Sanjay Mehrotra & M. Gokhan Ozevin, 2009. "Decomposition Based Interior Point Methods for Two-Stage Stochastic Convex Quadratic Programs with Recourse," Operations Research, INFORMS, vol. 57(4), pages 964-974, August.
    3. Arthur Hsu & Yehuda Bassok, 1999. "Random Yield and Random Demand in a Production System with Downward Substitution," Operations Research, INFORMS, vol. 47(2), pages 277-290, April.
    4. Jens Hübner & Martin Schmidt & Marc C. Steinbach, 2017. "A Distributed Interior-Point KKT Solver for Multistage Stochastic Optimization," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 612-630, November.
    5. Castro, Jordi & Escudero, Laureano F. & Monge, Juan F., 2023. "On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 268-285.
    6. Xi Yang & Jacek Gondzio & Andreas Grothey, 2010. "Asset liability management modelling with risk control by stochastic dominance," Journal of Asset Management, Palgrave Macmillan, vol. 11(2), pages 73-93, June.
    7. Gondzio, Jacek & Grothey, Andreas, 2007. "Solving non-linear portfolio optimization problems with the primal-dual interior point method," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1019-1029, September.
    8. Blomvall, Jörgen & Hagenbjörk, Johan, 2022. "Reducing transaction costs for interest rate risk hedging with stochastic programming," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1282-1293.
    9. Jacek Gondzio & Andreas Grothey, 2009. "Exploiting structure in parallel implementation of interior point methods for optimization," Computational Management Science, Springer, vol. 6(2), pages 135-160, May.
    10. Ankur Kulkarni & Uday Shanbhag, 2012. "Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms," Computational Optimization and Applications, Springer, vol. 51(1), pages 77-123, January.
    11. Tonbari, Mohamed El & Ahmed, Shabbir, 2023. "Consensus-based Dantzig-Wolfe decomposition," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1441-1456.
    12. Alois Geyer & Michael Hanke & Alex Weissensteiner, 2009. "A stochastic programming approach for multi-period portfolio optimization," Computational Management Science, Springer, vol. 6(2), pages 187-208, May.
    13. Jie Sun & Xinwei Liu, 2006. "Scenario Formulation of Stochastic Linear Programs and the Homogeneous Self-Dual Interior-Point Method," INFORMS Journal on Computing, INFORMS, vol. 18(4), pages 444-454, November.
    14. Miguel, Angel Víctor de, 2004. "On the relationship between bilevel decomposition algorithms and direct interior-point methods," DES - Working Papers. Statistics and Econometrics. WS ws042509, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Fuente, J. L. de la & García, C. & Prieto, Francisco J. & Escudero, L. F., 1996. "A parallel computation approach for solving multistage stochastic network problems," DES - Working Papers. Statistics and Econometrics. WS 10455, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Frank E. Curtis & Arvind U. Raghunathan, 2017. "Solving nearly-separable quadratic optimization problems as nonsmooth equations," Computational Optimization and Applications, Springer, vol. 67(2), pages 317-360, June.
    17. Altman, Anna, 1995. "QHOPDM -- A higher order primal-dual method for large scale convex quadratic programming," European Journal of Operational Research, Elsevier, vol. 87(1), pages 200-202, November.
    18. Simone Farinelli & Luisa Tibiletti, 2015. "Hydroassets Portfolio Management for Intraday Electricity Trading from a Discrete Time Stochastic Optimization Perspective," Papers 1508.05837, arXiv.org, revised Aug 2017.
    19. Teemu Pennanen & Markku Kallio, 2006. "A splitting method for stochastic programs," Annals of Operations Research, Springer, vol. 142(1), pages 259-268, February.
    20. Marco Colombo & Andreas Grothey, 2013. "A decomposition-based crash-start for stochastic programming," Computational Optimization and Applications, Springer, vol. 55(2), pages 311-340, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:17:y:2020:i:3:d:10.1007_s10287-020-00362-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.