Branching on hyperplane methods for mixed integer linear and convex programming using adjoint lattices
Author
Abstract
Suggested Citation
DOI: 10.1007/s10898-010-9554-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Leonid G. Khachiyan, 1996. "Rounding of Polytopes in the Real Number Model of Computation," Mathematics of Operations Research, INFORMS, vol. 21(2), pages 307-320, May.
- ANSTREICHER, Kurt M., 1999. "Ellipsoidal approximations of convex sets based on the volumetric barrier," LIDAM Reprints CORE 1393, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- William Cook & Thomas Rutherford & Herbert E. Scarf & David Shallcross, 1993.
"An Implementation of the Generalized Basis Reduction Algorithm for Integer Programming,"
INFORMS Journal on Computing, INFORMS, vol. 5(2), pages 206-212, May.
- William Cook & Thomas Rutherford & Herbert E. Scarf & David F. Shallcross, 1991. "An Implementation of the Generalized Basis Reduction Algorithm for Integer Programming," Cowles Foundation Discussion Papers 990, Cowles Foundation for Research in Economics, Yale University.
- H. W. Lenstra, 1983. "Integer Programming with a Fixed Number of Variables," Mathematics of Operations Research, INFORMS, vol. 8(4), pages 538-548, November.
- AARDAL, Karen & WEISMANTEL, Robert & WOLSEY, Laurence, 2002. "Non-standard approaches to integer programming," LIDAM Reprints CORE 1568, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- K. M. Anstreicher, 1999. "Ellipsoidal Approximations of Convex Sets Based on the Volumetric Barrier," Mathematics of Operations Research, INFORMS, vol. 24(1), pages 193-203, February.
- Herbert E. Scarf & Laszlo Lovasz, 1990. "The Generalized Basis Reduction Algorithm," Cowles Foundation Discussion Papers 946, Cowles Foundation for Research in Economics, Yale University.
- Karen Aardal & Arjen K. Lenstra, 2004. "Hard Equality Constrained Integer Knapsacks," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 724-738, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kibaek Kim & Sanjay Mehrotra, 2015. "A Two-Stage Stochastic Integer Programming Approach to Integrated Staffing and Scheduling with Application to Nurse Management," Operations Research, INFORMS, vol. 63(6), pages 1431-1451, December.
- Miguel Anjos & Xiao-Wen Chang & Wen-Yang Ku, 2014. "Lattice preconditioning for the real relaxation branch-and-bound approach for integer least squares problems," Journal of Global Optimization, Springer, vol. 59(2), pages 227-242, July.
- Karen Aardal & Frederik von Heymann, 2014. "On the Structure of Reduced Kernel Lattice Bases," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 823-840, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Karen Aardal & Frederik von Heymann, 2014. "On the Structure of Reduced Kernel Lattice Bases," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 823-840, August.
- William Cook & Thomas Rutherford & Herbert E. Scarf & David F. Shallcross, 1991. "An Implementation of the Generalized Basis Reduction Algorithm for Integer Programming," Cowles Foundation Discussion Papers 990, Cowles Foundation for Research in Economics, Yale University.
- Karen Aardal & Arjen K. Lenstra, 2004. "Hard Equality Constrained Integer Knapsacks," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 724-738, August.
- Elhedhli, Samir & Naoum-Sawaya, Joe, 2015. "Improved branching disjunctions for branch-and-bound: An analytic center approach," European Journal of Operational Research, Elsevier, vol. 247(1), pages 37-45.
- Yu Yang & Natashia Boland & Martin Savelsbergh, 2021. "Multivariable Branching: A 0-1 Knapsack Problem Case Study," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1354-1367, October.
- Karen Aardal & Cor A. J. Hurkens & Arjen K. Lenstra, 2000. "Solving a System of Linear Diophantine Equations with Lower and Upper Bounds on the Variables," Mathematics of Operations Research, INFORMS, vol. 25(3), pages 427-442, August.
- Miguel Anjos & Xiao-Wen Chang & Wen-Yang Ku, 2014. "Lattice preconditioning for the real relaxation branch-and-bound approach for integer least squares problems," Journal of Global Optimization, Springer, vol. 59(2), pages 227-242, July.
- Gérard Cornuéjols & Milind Dawande, 1999. "A Class of Hard Small 0-1 Programs," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 205-210, May.
- Kurt M. Anstreicher, 2000. "The Volumetric Barrier for Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 25(3), pages 365-380, August.
- Thorsten Koch & Ted Ralphs & Yuji Shinano, 2012. "Could we use a million cores to solve an integer program?," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(1), pages 67-93, August.
- M. Köppe & M. Queyranne & C. T. Ryan, 2010. "Parametric Integer Programming Algorithm for Bilevel Mixed Integer Programs," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 137-150, July.
- K. Aardal & R. E. Bixby & C. A. J. Hurkens & A. K. Lenstra & J. W. Smeltink, 2000. "Market Split and Basis Reduction: Towards a Solution of the Cornuéjols-Dawande Instances," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 192-202, August.
- Mohit Singh & Weijun Xie, 2020. "Approximation Algorithms for D -optimal Design," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1512-1534, November.
- Alberto Del Pia & Robert Hildebrand & Robert Weismantel & Kevin Zemmer, 2016. "Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 511-530, May.
- Klaus Jansen & Roberto Solis-Oba, 2011. "A Polynomial Time OPT + 1 Algorithm for the Cutting Stock Problem with a Constant Number of Object Lengths," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 743-753, November.
- Friedrich Eisenbrand & Gennady Shmonin, 2008. "Parametric Integer Programming in Fixed Dimension," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 839-850, November.
- Elizabeth Baldwin & Paul Klemperer, 2019.
"Understanding Preferences: “Demand Types”, and the Existence of Equilibrium With Indivisibilities,"
Econometrica, Econometric Society, vol. 87(3), pages 867-932, May.
- Elizabeth Baldwin & Paul Klemperer, 2015. "Understanding Preferences: “Demand Types”, and the Existence of Equilibrium with Indivisibilities," Economics Papers 2015-W10, Economics Group, Nuffield College, University of Oxford.
- Klemperer, Paul & Baldwin, Elizabeth, 2019. "Understanding Preferences: "Demand Types", and the Existence of Equilibrium with Indivisibilities," CEPR Discussion Papers 13586, C.E.P.R. Discussion Papers.
- Baldwin, Elizabeth & Klemperer, Paul, 2016. "Understanding preferences: "demand types", and the existence of equilibrium with indivisibilities," LSE Research Online Documents on Economics 63198, London School of Economics and Political Science, LSE Library.
- Jaykrishnan, G. & Levin, Asaf, 2024. "Scheduling with cardinality dependent unavailability periods," European Journal of Operational Research, Elsevier, vol. 316(2), pages 443-458.
- Masing, Berenike & Lindner, Niels & Borndörfer, Ralf, 2022. "The price of symmetric line plans in the Parametric City," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 419-443.
- Sanchari Deb & Kari Tammi & Karuna Kalita & Pinakeswar Mahanta, 2018. "Review of recent trends in charging infrastructure planning for electric vehicles," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
More about this item
Keywords
Linear programming; Volumetric center; Analytic center; Interior point methods; Convex programming; Mixed integer programming; Lattice basis reduction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:49:y:2011:i:4:p:623-649. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.