IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v62y2015i2p351-370.html
   My bibliography  Save this article

Fast algorithms for the minimum volume estimator

Author

Listed:
  • Selin Ahipaşaoğlu

Abstract

The minimum volume ellipsoid (MVE) estimator is an important tool in robust regression and outlier detection in statistics. We develop fast and efficient algorithms for the MVE estimator problem and discuss how they can be implemented efficiently. The novelty of our approach stems from the recent developments in the first-order algorithms for solving the related minimum volume enclosing ellipsoid problem. Comparative computational results are provided which demonstrate the strength of the algorithms. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Selin Ahipaşaoğlu, 2015. "Fast algorithms for the minimum volume estimator," Journal of Global Optimization, Springer, vol. 62(2), pages 351-370, June.
  • Handle: RePEc:spr:jglopt:v:62:y:2015:i:2:p:351-370
    DOI: 10.1007/s10898-014-0233-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-014-0233-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-014-0233-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eligius M.T. Hendrix & Boglárka G.-Tóth, 2010. "Introduction to Nonlinear and Global Optimization," Springer Optimization and Its Applications, Springer, number 978-0-387-88670-1, December.
    2. Leonid G. Khachiyan, 1996. "Rounding of Polytopes in the Real Number Model of Computation," Mathematics of Operations Research, INFORMS, vol. 21(2), pages 307-320, May.
    3. Cook, R. D. & Hawkins, D. M. & Weisberg, S., 1993. "Exact iterative computation of the robust multivariate minimum volume ellipsoid estimator," Statistics & Probability Letters, Elsevier, vol. 16(3), pages 213-218, February.
    4. Torti, Francesca & Perrotta, Domenico & Atkinson, Anthony C. & Riani, Marco, 2012. "Benchmark testing of algorithms for very robust regression: FS, LMS and LTS," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2501-2512.
    5. Harman, Radoslav & Pronzato, Luc, 2007. "Improvements on removing nonoptimal support points in D-optimum design algorithms," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 90-94, January.
    6. P. Kumar & E. A. Yildirim, 2005. "Minimum-Volume Enclosing Ellipsoids and Core Sets," Journal of Optimization Theory and Applications, Springer, vol. 126(1), pages 1-21, July.
    7. Hawkins, Douglas M. & Olive, David J., 1999. "Improved feasible solution algorithms for high breakdown estimation," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei-jie Cong & Hong-wei Liu & Feng Ye & Shui-sheng Zhou, 2012. "Rank-two update algorithms for the minimum volume enclosing ellipsoid problem," Computational Optimization and Applications, Springer, vol. 51(1), pages 241-257, January.
    2. J. L. Alfaro & J. Fco. Ortega, 2009. "A comparison of robust alternatives to Hotelling's T2 control chart," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(12), pages 1385-1396.
    3. Rosa, Samuel & Harman, Radoslav, 2022. "Computing minimum-volume enclosing ellipsoids for large datasets," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    4. P. Kumar & E. A. Yıldırım, 2008. "Computing Minimum-Volume Enclosing Axis-Aligned Ellipsoids," Journal of Optimization Theory and Applications, Springer, vol. 136(2), pages 211-228, February.
    5. Pronzato, Luc, 2013. "A delimitation of the support of optimal designs for Kiefer’s ϕp-class of criteria," Statistics & Probability Letters, Elsevier, vol. 83(12), pages 2721-2728.
    6. van Dijk, Diana & Hendrix, Eligius M.T. & Haijema, Rene & Groeneveld, Rolf A. & van Ierland, Ekko C., 2014. "On solving a bi-level stochastic dynamic programming model for analyzing fisheries policies: Fishermen behavior and optimal fish quota," Ecological Modelling, Elsevier, vol. 272(C), pages 68-75.
    7. Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019. "Models where the Least Trimmed Squares and Least Median of Squares estimators are maximum likelihood," CREATES Research Papers 2019-15, Department of Economics and Business Economics, Aarhus University.
    8. Maria Teresa Alonso & Carlo Ferigato & Deimos Ibanez Segura & Domenico Perrotta & Adria Rovira-Garcia & Emmanuele Sordini, 2021. "Analysis of ‘Pre-Fit’ Datasets of gLAB by Robust Statistical Techniques," Stats, MDPI, vol. 4(2), pages 1-19, May.
    9. Karim Abou-Moustafa & Frank P. Ferrie, 2018. "Local generalized quadratic distance metrics: application to the k-nearest neighbors classifier," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 341-363, June.
    10. Harman, Radoslav & Rosa, Samuel, 2019. "Removal of the points that do not support an E-optimal experimental design," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 83-89.
    11. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2007. "Improving updating rules in multiplicativealgorithms for computing D-optimal designs," Technical Reports 2007,28, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    12. Croux, Christophe & Haesbroeck, Gentiane, 1997. "An easy way to increase the finite-sample efficiency of the resampled minimum volume ellipsoid estimator," Computational Statistics & Data Analysis, Elsevier, vol. 25(2), pages 125-141, July.
    13. Juan F. R. Herrera & José M. G. Salmerón & Eligius M. T. Hendrix & Rafael Asenjo & Leocadio G. Casado, 2017. "On parallel Branch and Bound frameworks for Global Optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 547-560, November.
    14. Nunkesser, Robin & Morell, Oliver, 2008. "Evolutionary algorithms for robust methods," Technical Reports 2008,29, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    15. Yu, Yaming, 2010. "Strict monotonicity and convergence rate of Titterington's algorithm for computing D-optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1419-1425, June.
    16. Hawkins, Douglas M. & Olive, David J., 1999. "Improved feasible solution algorithms for high breakdown estimation," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 1-11, March.
    17. Baishuai Zuo & Chuancun Yin & Jing Yao, 2023. "Multivariate range Value-at-Risk and covariance risk measures for elliptical and log-elliptical distributions," Papers 2305.09097, arXiv.org.
    18. Olive, David J., 2004. "A resistant estimator of multivariate location and dispersion," Computational Statistics & Data Analysis, Elsevier, vol. 46(1), pages 93-102, May.
    19. Zhong, Zhiming & Fan, Neng & Wu, Lei, 2023. "A hybrid robust-stochastic optimization approach for day-ahead scheduling of cascaded hydroelectric system in restructured electricity market," European Journal of Operational Research, Elsevier, vol. 306(2), pages 909-926.
    20. Moody Chu & Matthew Lin & Liqi Wang, 2014. "A study of singular spectrum analysis with global optimization techniques," Journal of Global Optimization, Springer, vol. 60(3), pages 551-574, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:62:y:2015:i:2:p:351-370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.