IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v167y2005i2p297-319.html
   My bibliography  Save this article

Approximation schemes for job shop scheduling problems with controllable processing times

Author

Listed:
  • Jansen, Klaus
  • Mastrolilli, Monaldo
  • Solis-Oba, Roberto

Abstract

No abstract is available for this item.

Suggested Citation

  • Jansen, Klaus & Mastrolilli, Monaldo & Solis-Oba, Roberto, 2005. "Approximation schemes for job shop scheduling problems with controllable processing times," European Journal of Operational Research, Elsevier, vol. 167(2), pages 297-319, December.
  • Handle: RePEc:eee:ejores:v:167:y:2005:i:2:p:297-319
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(04)00285-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Teofilo Gonzalez & Sartaj Sahni, 1978. "Flowshop and Jobshop Schedules: Complexity and Approximation," Operations Research, INFORMS, vol. 26(1), pages 36-52, February.
    2. Nowicki, Eugeniusz & Zdrzalka, Stanislaw, 1988. "A two-machine flow shop scheduling problem with controllable job processing times," European Journal of Operational Research, Elsevier, vol. 34(2), pages 208-220, March.
    3. D. P. Williamson & L. A. Hall & J. A. Hoogeveen & C. A. J. Hurkens & J. K. Lenstra & S. V. Sevast'janov & D. B. Shmoys, 1997. "Short Shop Schedules," Operations Research, INFORMS, vol. 45(2), pages 288-294, April.
    4. R. G. Vickson, 1980. "Choosing the Job Sequence and Processing Times to Minimize Total Processing Plus Flow Cost on a Single Machine," Operations Research, INFORMS, vol. 28(5), pages 1155-1167, October.
    5. Michael A. Trick, 1994. "Scheduling Multiple Variable-Speed Machines," Operations Research, INFORMS, vol. 42(2), pages 234-248, April.
    6. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    7. Nowicki, Eugeniusz, 1993. "An approximation algorithm for the m-machine permutation flow shop scheduling problem with controllable processing times," European Journal of Operational Research, Elsevier, vol. 70(3), pages 342-349, November.
    8. Michael D. Grigoriadis & Leonid G. Khachiyan, 1996. "Coordination Complexity of Parallel Price-Directive Decomposition," Mathematics of Operations Research, INFORMS, vol. 21(2), pages 321-340, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li-Ning Xing & Ying-Wu Chen & Ke-Wei Yang, 2011. "Multi-population interactive coevolutionary algorithm for flexible job shop scheduling problems," Computational Optimization and Applications, Springer, vol. 48(1), pages 139-155, January.
    2. Jacomine Grobler & Andries Engelbrecht & Schalk Kok & Sarma Yadavalli, 2010. "Metaheuristics for the multi-objective FJSP with sequence-dependent set-up times, auxiliary resources and machine down time," Annals of Operations Research, Springer, vol. 180(1), pages 165-196, November.
    3. Yuri N. Sotskov & Natalja M. Matsveichuk & Vadzim D. Hatsura, 2020. "Schedule Execution for Two-Machine Job-Shop to Minimize Makespan with Uncertain Processing Times," Mathematics, MDPI, vol. 8(8), pages 1-51, August.
    4. Chen, Lin & Ye, Deshi & Zhang, Guochuan, 2018. "Parallel machine scheduling with speed-up resources," European Journal of Operational Research, Elsevier, vol. 268(1), pages 101-112.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Chen & Yinhui Cai & Longcheng Liu & Guangting Chen & Randy Goebel & Guohui Lin & Bing Su & An Zhang, 2022. "Path cover with minimum nontrivial paths and its application in two-machine flow-shop scheduling with a conflict graph," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 571-588, April.
    2. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    3. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    4. D Bai & L Tang, 2010. "New heuristics for flow shop problem to minimize makespan," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(6), pages 1032-1040, June.
    5. Selvi, Omer & Gokbayrak, Kagan, 2010. "A search method for optimal control of a flow shop system of traditional machines," European Journal of Operational Research, Elsevier, vol. 205(2), pages 325-331, September.
    6. Jianming Dong & Ruyan Jin & Jueliang Hu & Guohui Lin, 2019. "A fully polynomial time approximation scheme for scheduling on parallel identical two-stage openshops," Journal of Combinatorial Optimization, Springer, vol. 37(2), pages 668-684, February.
    7. Gupta, Jatinder N.D. & Koulamas, Christos & Kyparisis, George J., 2006. "Performance guarantees for flowshop heuristics to minimize makespan," European Journal of Operational Research, Elsevier, vol. 169(3), pages 865-872, March.
    8. T.C.E. Cheng & B.M.T. Lin & A. Toker, 2000. "Makespan minimization in the two‐machine flowshop batch scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(2), pages 128-144, March.
    9. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    10. Monaci, Marta & Agasucci, Valerio & Grani, Giorgio, 2024. "An actor-critic algorithm with policy gradients to solve the job shop scheduling problem using deep double recurrent agents," European Journal of Operational Research, Elsevier, vol. 312(3), pages 910-926.
    11. Matthias Bultmann & Sigrid Knust & Stefan Waldherr, 2018. "Flow shop scheduling with flexible processing times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 809-829, July.
    12. Cheng, T. C. E. & Oguz, C. & Qi, X. D., 1996. "Due-date assignment and single machine scheduling with compressible processing times," International Journal of Production Economics, Elsevier, vol. 43(1), pages 29-35, May.
    13. Kameng Nip & Zhenbo Wang & Fabrice Talla Nobibon & Roel Leus, 2015. "A combination of flow shop scheduling and the shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 29(1), pages 36-52, January.
    14. Wang, Ji-Bo & Xia, Zun-Quan, 2007. "Single machine scheduling problems with controllable processing times and total absolute differences penalties," European Journal of Operational Research, Elsevier, vol. 177(1), pages 638-645, February.
    15. T.C.E. Cheng & Zhi‐Long Chen & Chung‐Lun Li & B.M.‐T. Lin, 1998. "Scheduling to minimize the total compression and late costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(1), pages 67-82, February.
    16. Olivier Ploton & Vincent T’kindt, 2023. "Moderate worst-case complexity bounds for the permutation flowshop scheduling problem using Inclusion–Exclusion," Journal of Scheduling, Springer, vol. 26(2), pages 137-145, April.
    17. Kayan, Rabia K. & Akturk, M. Selim, 2005. "A new bounding mechanism for the CNC machine scheduling problems with controllable processing times," European Journal of Operational Research, Elsevier, vol. 167(3), pages 624-643, December.
    18. Nikhil Bansal & Tracy Kimbrel & Maxim Sviridenko, 2006. "Job Shop Scheduling with Unit Processing Times," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 381-389, May.
    19. He, Zesheng & Yang, Taeyong & Tiger, Andy, 1996. "An exchange heuristic imbedded with simulated annealing for due-dates job-shop scheduling," European Journal of Operational Research, Elsevier, vol. 91(1), pages 99-117, May.
    20. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:167:y:2005:i:2:p:297-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.