IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v26y2023i2d10.1007_s10951-022-00759-1.html
   My bibliography  Save this article

Moderate worst-case complexity bounds for the permutation flowshop scheduling problem using Inclusion–Exclusion

Author

Listed:
  • Olivier Ploton

    (Université de Tours)

  • Vincent T’kindt

    (Université de Tours)

Abstract

In this paper, we are interested in minimizing the maximal or total cost of jobs in a permutation flowshop. This problem is known to be strongly NP-hard and exact algorithms of practical interest to solve it have very high, often factorial, worst-case complexity bounds. From a more theoretical point of view, we describe an Inclusion–Exclusion-based exact algorithm with a moderate exponential time and a pseudopolynomial space worst-case complexity bound for a fixed number of machines. We discuss extensions of this algorithm for job precedence constraints, with moderate exponential space and time bounds.

Suggested Citation

  • Olivier Ploton & Vincent T’kindt, 2023. "Moderate worst-case complexity bounds for the permutation flowshop scheduling problem using Inclusion–Exclusion," Journal of Scheduling, Springer, vol. 26(2), pages 137-145, April.
  • Handle: RePEc:spr:jsched:v:26:y:2023:i:2:d:10.1007_s10951-022-00759-1
    DOI: 10.1007/s10951-022-00759-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-022-00759-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-022-00759-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinliang Cheng & Hiroshi Kise & Hironori Matsumoto, 1997. "A branch-and-bound algorithm with fuzzy inference for a permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 96(3), pages 578-590, February.
    2. Lei Shang & Christophe Lenté & Mathieu Liedloff & Vincent T’Kindt, 2018. "Exact exponential algorithms for 3-machine flowshop scheduling problems," Journal of Scheduling, Springer, vol. 21(2), pages 227-233, April.
    3. D. P. Williamson & L. A. Hall & J. A. Hoogeveen & C. A. J. Hurkens & J. K. Lenstra & S. V. Sevast'janov & D. B. Shmoys, 1997. "Short Shop Schedules," Operations Research, INFORMS, vol. 45(2), pages 288-294, April.
    4. Carlier, Jacques & Rebai, Ismail, 1996. "Two branch and bound algorithms for the permutation flow shop problem," European Journal of Operational Research, Elsevier, vol. 90(2), pages 238-251, April.
    5. B. J. Lageweg & J. K. Lenstra & A. H. G. Rinnooy Kan, 1978. "A General Bounding Scheme for the Permutation Flow-Shop Problem," Operations Research, INFORMS, vol. 26(1), pages 53-67, February.
    6. Edward Ignall & Linus Schrage, 1965. "Application of the Branch and Bound Technique to Some Flow-Shop Scheduling Problems," Operations Research, INFORMS, vol. 13(3), pages 400-412, June.
    7. Brah, Shaukat A. & Hunsucker, John L., 1991. "Branch and bound algorithm for the flow shop with multiple processors," European Journal of Operational Research, Elsevier, vol. 51(1), pages 88-99, March.
    8. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    9. G. B. McMahon & P. G. Burton, 1967. "Flow-Shop Scheduling with the Branch-and-Bound Method," Operations Research, INFORMS, vol. 15(3), pages 473-481, June.
    10. Potts, C. N., 1980. "An adaptive branching rule for the permutation flow-shop problem," European Journal of Operational Research, Elsevier, vol. 5(1), pages 19-25, July.
    11. J M Framinan & J N D Gupta & R Leisten, 2004. "A review and classification of heuristics for permutation flow-shop scheduling with makespan objective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1243-1255, December.
    12. Gmys, Jan & Mezmaz, Mohand & Melab, Nouredine & Tuyttens, Daniel, 2020. "A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 284(3), pages 814-833.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Shang & Christophe Lenté & Mathieu Liedloff & Vincent T’Kindt, 2018. "Exact exponential algorithms for 3-machine flowshop scheduling problems," Journal of Scheduling, Springer, vol. 21(2), pages 227-233, April.
    2. Gmys, Jan & Mezmaz, Mohand & Melab, Nouredine & Tuyttens, Daniel, 2020. "A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 284(3), pages 814-833.
    3. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    4. S Yanai & T Fujie, 2006. "A three-machine permutation flow-shop problem with minimum makespan on the second machine," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 460-468, April.
    5. M Haouari & T Ladhari, 2003. "A branch-and-bound-based local search method for the flow shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(10), pages 1076-1084, October.
    6. Jan Gmys, 2022. "Exactly Solving Hard Permutation Flowshop Scheduling Problems on Peta-Scale GPU-Accelerated Supercomputers," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2502-2522, September.
    7. Kim, Yeong-Dae, 1995. "Minimizing total tardiness in permutation flowshops," European Journal of Operational Research, Elsevier, vol. 85(3), pages 541-555, September.
    8. Cheng, Jinliang & Steiner, George & Stephenson, Paul, 2001. "A computational study with a new algorithm for the three-machine permutation flow-shop problem with release times," European Journal of Operational Research, Elsevier, vol. 130(3), pages 559-575, May.
    9. J M Framinan & J N D Gupta & R Leisten, 2004. "A review and classification of heuristics for permutation flow-shop scheduling with makespan objective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1243-1255, December.
    10. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    11. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    12. B-J Joo & Y-D Kim, 2009. "A branch-and-bound algorithm for a two-machine flowshop scheduling problem with limited waiting time constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 572-582, April.
    13. D Bai & L Tang, 2010. "New heuristics for flow shop problem to minimize makespan," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(6), pages 1032-1040, June.
    14. Libralesso, Luc & Focke, Pablo Andres & Secardin, Aurélien & Jost, Vincent, 2022. "Iterative beam search algorithms for the permutation flowshop," European Journal of Operational Research, Elsevier, vol. 301(1), pages 217-234.
    15. Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
    16. Chung, Chia-Shin & Flynn, James & Kirca, Omer, 2002. "A branch and bound algorithm to minimize the total flow time for m-machine permutation flowshop problems," International Journal of Production Economics, Elsevier, vol. 79(3), pages 185-196, October.
    17. N Madhushini & C Rajendran & Y Deepa, 2009. "Branch-and-bound algorithms for scheduling in permutation flowshops to minimize the sum of weighted flowtime/sum of weighted tardiness/sum of weighted flowtime and weighted tardiness/sum of weighted f," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 991-1004, July.
    18. Gupta, Jatinder N.D. & Koulamas, Christos & Kyparisis, George J., 2006. "Performance guarantees for flowshop heuristics to minimize makespan," European Journal of Operational Research, Elsevier, vol. 169(3), pages 865-872, March.
    19. Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
    20. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:26:y:2023:i:2:d:10.1007_s10951-022-00759-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.