IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v122y2000i3p570-583.html
   My bibliography  Save this article

Optimization over the efficient set of a parametric multiple objective linear programming problem

Author

Listed:
  • Tu, Ta Van

Abstract

No abstract is available for this item.

Suggested Citation

  • Tu, Ta Van, 2000. "Optimization over the efficient set of a parametric multiple objective linear programming problem," European Journal of Operational Research, Elsevier, vol. 122(3), pages 570-583, May.
  • Handle: RePEc:eee:ejores:v:122:y:2000:i:3:p:570-583
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(99)00095-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dessouky, M. I. & Ghiassi, M. & Davis, W. J., 1986. "Estimates of the minimum nondominated criterion values in multiple-criteria decision-making," Engineering Costs and Production Economics, Elsevier, vol. 10(2), pages 95-104, June.
    2. Gal, Tomas, 1977. "A general method for determining the set of all efficient solutions to a linear vectormaximum problem," European Journal of Operational Research, Elsevier, vol. 1(5), pages 307-322, September.
    3. Éva Tardos, 1986. "A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs," Operations Research, INFORMS, vol. 34(2), pages 250-256, April.
    4. White, D. J., 1996. "The maximization of a function over the efficient set via a penalty function approach," European Journal of Operational Research, Elsevier, vol. 94(1), pages 143-153, October.
    5. T. H. Matheiss & David S. Rubin, 1980. "A Survey and Comparison of Methods for Finding All Vertices of Convex Polyhedral Sets," Mathematics of Operations Research, INFORMS, vol. 5(2), pages 167-185, May.
    6. Harold P. Benson & Serpil Sayin, 1993. "A face search heuristic algorithm for optimizing over the efficient set," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(1), pages 103-116, February.
    7. R. Horst & N. V. Thoai, 1997. "Utility Function Programs and Optimization over the Efficient Set in Multiple-Objective Decision Making," Journal of Optimization Theory and Applications, Springer, vol. 92(3), pages 605-631, March.
    8. Benson, Harold P., 1986. "An algorithm for optimizing over the weakly-efficient set," European Journal of Operational Research, Elsevier, vol. 25(2), pages 192-199, May.
    9. Reeves, Gary R. & Reid, Randall C., 1988. "Minimum values over the efficient set in multiple objective decision making," European Journal of Operational Research, Elsevier, vol. 36(3), pages 334-338, September.
    10. Tu, T.V., 1996. "On generalized linear multiple objective programming," Pure Mathematics and Applications, Department of Mathematics, Corvinus University of Budapest, vol. 7(3-4), pages 361-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hadi-Vencheh, Abdollah & Foroughi, Ali Asghar & Soleimani-damaneh, Majid, 2008. "A DEA model for resource allocation," Economic Modelling, Elsevier, vol. 25(5), pages 983-993, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kahina Ghazli & Nicolas Gillis & Mustapha Moulaï, 2020. "Optimizing over the properly efficient set of convex multi-objective optimization problems," Annals of Operations Research, Springer, vol. 295(2), pages 575-604, December.
    2. R. Horst & N. V. Thoai, 1997. "Utility Function Programs and Optimization over the Efficient Set in Multiple-Objective Decision Making," Journal of Optimization Theory and Applications, Springer, vol. 92(3), pages 605-631, March.
    3. Thoai, Nguyen V., 2000. "A class of optimization problems over the efficient set of a multiple criteria nonlinear programming problem," European Journal of Operational Research, Elsevier, vol. 122(1), pages 58-68, April.
    4. Alves, Maria João & Costa, João Paulo, 2009. "An exact method for computing the nadir values in multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 198(2), pages 637-646, October.
    5. Kalu, Timothy Ch. U., 1999. "An algorithm for systems welfare interactive goal programming modelling," European Journal of Operational Research, Elsevier, vol. 116(3), pages 508-529, August.
    6. Serpil Sayin, 2003. "A Procedure to Find Discrete Representations of the Efficient Set with Specified Coverage Errors," Operations Research, INFORMS, vol. 51(3), pages 427-436, June.
    7. Stacey Faulkenberg & Margaret Wiecek, 2012. "Generating equidistant representations in biobjective programming," Computational Optimization and Applications, Springer, vol. 51(3), pages 1173-1210, April.
    8. Serpil Sayin, 2000. "Optimizing Over the Efficient Set Using a Top-Down Search of Faces," Operations Research, INFORMS, vol. 48(1), pages 65-72, February.
    9. Harold Benson, 2012. "An outcome space algorithm for optimization over the weakly efficient set of a multiple objective nonlinear programming problem," Journal of Global Optimization, Springer, vol. 52(3), pages 553-574, March.
    10. J. Fülöp & L. D. Muu, 2000. "Branch-and-Bound Variant of an Outcome-Based Algorithm for Optimizing over the Efficient Set of a Bicriteria Linear Programming Problem," Journal of Optimization Theory and Applications, Springer, vol. 105(1), pages 37-54, April.
    11. Gallagher, Richard J. & Saleh, Ossama A., 1995. "A representation of an efficiency equivalent polyhedron for the objective set of a multiple objective linear program," European Journal of Operational Research, Elsevier, vol. 80(1), pages 204-212, January.
    12. Ehrgott, Matthias & Tenfelde-Podehl, Dagmar, 2003. "Computation of ideal and Nadir values and implications for their use in MCDM methods," European Journal of Operational Research, Elsevier, vol. 151(1), pages 119-139, November.
    13. Steuer, Ralph E. & Piercy, Craig A., 2005. "A regression study of the number of efficient extreme points in multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 162(2), pages 484-496, April.
    14. A.P. Wierzbicki, 1998. "Reference Point Methods in Vector Optimization and Decision Support," Working Papers ir98017, International Institute for Applied Systems Analysis.
    15. Ting Pong & Hao Sun & Ningchuan Wang & Henry Wolkowicz, 2016. "Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 333-364, March.
    16. Erjiang Sun, 2017. "On Optimization Over the Efficient Set of a Multiple Objective Linear Programming Problem," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 236-246, January.
    17. repec:cep:stiecm:em/2012/559 is not listed on IDEAS
    18. G Mavrotas & E Georgopoulou & S Mirasgedis & Y Sarafidis & D Lalas & V Hontou & N Gakis, 2009. "Multi-objective combinatorial optimization for selecting best available techniques (BAT) in the industrial sector: the COMBAT tool," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 906-920, July.
    19. R. B. Bapat & S. K. Neogy, 2016. "On a quadratic programming problem involving distances in trees," Annals of Operations Research, Springer, vol. 243(1), pages 365-373, August.
    20. Amitai Armon & Iftah Gamzu & Danny Segev, 2014. "Mobile facility location: combinatorial filtering via weighted occupancy," Journal of Combinatorial Optimization, Springer, vol. 28(2), pages 358-375, August.
    21. H. P. Benson & E. Sun, 2000. "Outcome Space Partition of the Weight Set in Multiobjective Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 105(1), pages 17-36, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:122:y:2000:i:3:p:570-583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.