IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v23y1975i3p475-482.html
   My bibliography  Save this article

On Scheduling with Ready Times and Due Dates to Minimize Maximum Lateness

Author

Listed:
  • Graham McMahon

    (University of New South Wales, Australia)

  • Michael Florian

    (University of Montreal, Montreal, Quebec)

Abstract

An algorithm is developed for sequencing jobs on a single processor in order to minimize maximum lateness, subject to ready times and due dates. The method that we develop could be classified as branch-and-bound. However, it has the unusual feature that a complete solution is associated with each node of the enumeration tree.

Suggested Citation

  • Graham McMahon & Michael Florian, 1975. "On Scheduling with Ready Times and Due Dates to Minimize Maximum Lateness," Operations Research, INFORMS, vol. 23(3), pages 475-482, June.
  • Handle: RePEc:inm:oropre:v:23:y:1975:i:3:p:475-482
    DOI: 10.1287/opre.23.3.475
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.23.3.475
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.23.3.475?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Chen & Malgorzata Sterna & Xin Han & Jacek Blazewicz, 2016. "Scheduling on parallel identical machines with late work criterion: Offline and online cases," Journal of Scheduling, Springer, vol. 19(6), pages 729-736, December.
    2. Lancia, Giuseppe, 2000. "Scheduling jobs with release dates and tails on two unrelated parallel machines to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 120(2), pages 277-288, January.
    3. John J. Kanet & V. Sridharan, 2000. "Scheduling with Inserted Idle Time: Problem Taxonomy and Literature Review," Operations Research, INFORMS, vol. 48(1), pages 99-110, February.
    4. Wenda Zhang & Jason J. Sauppe & Sheldon H. Jacobson, 2021. "An Improved Branch-and-Bound Algorithm for the One-Machine Scheduling Problem with Delayed Precedence Constraints," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1091-1102, July.
    5. Dessouky, Maged M. & Dessouky, Mohamed I. & Verma, Sushil K., 1998. "Flowshop scheduling with identical jobs and uniform parallel machines," European Journal of Operational Research, Elsevier, vol. 109(3), pages 620-631, September.
    6. Da Col, Giacomo & Teppan, Erich C., 2022. "Industrial-size job shop scheduling with constraint programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    7. Raja Awais Liaqait & Shermeen Hamid & Salman Sagheer Warsi & Azfar Khalid, 2021. "A Critical Analysis of Job Shop Scheduling in Context of Industry 4.0," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    8. Alexander A. Lazarev & Nikolay Pravdivets & Frank Werner, 2020. "On the Dual and Inverse Problems of Scheduling Jobs to Minimize the Maximum Penalty," Mathematics, MDPI, vol. 8(7), pages 1-15, July.
    9. Liu, Weihua & Wang, Qian & Mao, Qiaomei & Wang, Shuqing & Zhu, Donglei, 2015. "A scheduling model of logistics service supply chain based on the mass customization service and uncertainty of FLSP’s operation time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 189-215.
    10. Jian Zhang & Guofu Ding & Yisheng Zou & Shengfeng Qin & Jianlin Fu, 2019. "Review of job shop scheduling research and its new perspectives under Industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1809-1830, April.
    11. Edzard Weber & Anselm Tiefenbacher & Norbert Gronau, 2019. "Need for Standardization and Systematization of Test Data for Job-Shop Scheduling," Data, MDPI, vol. 4(1), pages 1-21, February.
    12. Ivens, Philip & Lambrecht, Marc, 1996. "Extending the shifting bottleneck procedure to real-life applications," European Journal of Operational Research, Elsevier, vol. 90(2), pages 252-268, April.
    13. Dauzere-Peres, Stephane, 1995. "A procedure for the one-machine sequencing problem with dependent jobs," European Journal of Operational Research, Elsevier, vol. 81(3), pages 579-589, March.
    14. Pan, Yunpeng & Shi, Leyuan, 2006. "Branch-and-bound algorithms for solving hard instances of the one-machine sequencing problem," European Journal of Operational Research, Elsevier, vol. 168(3), pages 1030-1039, February.
    15. Golenko-Ginzburg, Dimitri & Kesler, Shmuel & Landsman, Zinoviy, 1995. "Industrial job-shop scheduling with random operations and different priorities," International Journal of Production Economics, Elsevier, vol. 40(2-3), pages 185-195, August.
    16. Reha Uzsoy & Chung‐Yee Lee & Louis A. Martin‐Vega, 1992. "Scheduling semiconductor test operations: Minimizing maximum lateness and number of tardy jobs on a single machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(3), pages 369-388, April.
    17. Nodari Vakhania & Frank Werner, 2021. "Branch Less, Cut More and Schedule Jobs with Release and Delivery Times on Uniform Machines," Mathematics, MDPI, vol. 9(6), pages 1-18, March.
    18. Kailiang Xu & Zuren Feng & Liangjun Ke, 2010. "A branch and bound algorithm for scheduling jobs with controllable processing times on a single machine to meet due dates," Annals of Operations Research, Springer, vol. 181(1), pages 303-324, December.
    19. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    20. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    21. Federico Alonso-Pecina & José Alberto Hernández & José Maria Sigarreta & Nodari Vakhania, 2020. "Fast Approximation for Scheduling One Machine," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
    22. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    23. Nodari Vakhania, 2019. "Dynamic Restructuring Framework for Scheduling with Release Times and Due-Dates," Mathematics, MDPI, vol. 7(11), pages 1-42, November.
    24. Asano, Makoto & Ohta, Hiroshi, 1996. "Single machine scheduling using dominance relation to minimize earliness subject to ready and due times," International Journal of Production Economics, Elsevier, vol. 44(1-2), pages 35-43, June.
    25. Philip Kaminsky, 2003. "The effectiveness of the longest delivery time rule for the flow shop delivery time problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(3), pages 257-272, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:23:y:1975:i:3:p:475-482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.