IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i7p1131-d382811.html
   My bibliography  Save this article

On the Dual and Inverse Problems of Scheduling Jobs to Minimize the Maximum Penalty

Author

Listed:
  • Alexander A. Lazarev

    (Institute of Control Sciences, 117997 Moscow, Russia)

  • Nikolay Pravdivets

    (Institute of Control Sciences, 117997 Moscow, Russia)

  • Frank Werner

    (Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg, 39106 Magdeburg, Germany)

Abstract

In this paper, we consider the single-machine scheduling problem with given release dates and the objective to minimize the maximum penalty which is NP-hard in the strong sense. For this problem, we introduce a dual and an inverse problem and show that both these problems can be solved in polynomial time. Since the dual problem gives a lower bound on the optimal objective function value of the original problem, we use the optimal function value of a sub-problem of the dual problem in a branch and bound algorithm for the original single-machine scheduling problem. We present some initial computational results for instances with up to 20 jobs.

Suggested Citation

  • Alexander A. Lazarev & Nikolay Pravdivets & Frank Werner, 2020. "On the Dual and Inverse Problems of Scheduling Jobs to Minimize the Maximum Penalty," Mathematics, MDPI, vol. 8(7), pages 1-15, July.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1131-:d:382811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/7/1131/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/7/1131/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Linus Schrage, 1970. "Solving Resource-Constrained Network Problems by Implicit Enumeration—Nonpreemptive Case," Operations Research, INFORMS, vol. 18(2), pages 263-278, April.
    2. Carlier, Jacques, 1982. "The one-machine sequencing problem," European Journal of Operational Research, Elsevier, vol. 11(1), pages 42-47, September.
    3. Ting Wang & Dehua Xu, 2015. "Single-Machine Scheduling with Workload-Dependent Maintenance Duration to Minimize Maximum Lateness," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-5, July.
    4. Graham McMahon & Michael Florian, 1975. "On Scheduling with Ready Times and Due Dates to Minimize Maximum Lateness," Operations Research, INFORMS, vol. 23(3), pages 475-482, June.
    5. Nicholas G. Hall & Marc E. Posner, 2001. "Generating Experimental Data for Computational Testing with Machine Scheduling Applications," Operations Research, INFORMS, vol. 49(6), pages 854-865, December.
    6. Evgeny Gafarov & Alexander Lazarev & Frank Werner, 2013. "Single machine total tardiness maximization problems: complexity and algorithms," Annals of Operations Research, Springer, vol. 207(1), pages 121-136, August.
    7. Norman Agin, 1966. "Optimum Seeking with Branch and Bound," Management Science, INFORMS, vol. 13(4), pages 176-185, December.
    8. J. A. Hoogeveen, 1996. "Minimizing Maximum Promptness and Maximum Lateness on a Single Machine," Mathematics of Operations Research, INFORMS, vol. 21(1), pages 100-114, February.
    9. B. J. Lageweg & J. K. Lenstra & A. H. G. Rinnooy Kan, 1976. "Minimizing maximum lateness on one machine: computational experience and some applications," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 30(1), pages 25-41, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladimir Galuzin & Anastasia Galitskaya & Sergey Grachev & Vladimir Larukhin & Dmitry Novichkov & Petr Skobelev & Alexey Zhilyaev, 2022. "Autonomous Digital Twin of Enterprise: Method and Toolset for Knowledge-Based Multi-Agent Adaptive Management of Tasks and Resources in Real Time," Mathematics, MDPI, vol. 10(10), pages 1-27, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenda Zhang & Jason J. Sauppe & Sheldon H. Jacobson, 2021. "An Improved Branch-and-Bound Algorithm for the One-Machine Scheduling Problem with Delayed Precedence Constraints," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1091-1102, July.
    2. Pan, Yunpeng & Shi, Leyuan, 2006. "Branch-and-bound algorithms for solving hard instances of the one-machine sequencing problem," European Journal of Operational Research, Elsevier, vol. 168(3), pages 1030-1039, February.
    3. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    4. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    5. Dauzere-Peres, Stephane, 1995. "A procedure for the one-machine sequencing problem with dependent jobs," European Journal of Operational Research, Elsevier, vol. 81(3), pages 579-589, March.
    6. Lancia, Giuseppe, 2000. "Scheduling jobs with release dates and tails on two unrelated parallel machines to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 120(2), pages 277-288, January.
    7. Reha Uzsoy & Chung‐Yee Lee & Louis A. Martin‐Vega, 1992. "Scheduling semiconductor test operations: Minimizing maximum lateness and number of tardy jobs on a single machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(3), pages 369-388, April.
    8. Federico Alonso-Pecina & José Alberto Hernández & José Maria Sigarreta & Nodari Vakhania, 2020. "Fast Approximation for Scheduling One Machine," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
    9. Nodari Vakhania, 2019. "Dynamic Restructuring Framework for Scheduling with Release Times and Due-Dates," Mathematics, MDPI, vol. 7(11), pages 1-42, November.
    10. Da Col, Giacomo & Teppan, Erich C., 2022. "Industrial-size job shop scheduling with constraint programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    11. Helena Ramalhinho-Lourenço, 1998. "A polynomial algorithm for special case of the one-machine scheduling problem with time-lags," Economics Working Papers 339, Department of Economics and Business, Universitat Pompeu Fabra.
    12. Susana Fernandes & Helena Ramalhinho-Lourenço, 2007. "A simple optimised search heuristic for the job-shop scheduling problem," Economics Working Papers 1050, Department of Economics and Business, Universitat Pompeu Fabra.
    13. Philip Kaminsky, 2003. "The effectiveness of the longest delivery time rule for the flow shop delivery time problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(3), pages 257-272, April.
    14. Kailiang Xu & Zuren Feng & Liangjun Ke, 2010. "A branch and bound algorithm for scheduling jobs with controllable processing times on a single machine to meet due dates," Annals of Operations Research, Springer, vol. 181(1), pages 303-324, December.
    15. Ivens, Philip & Lambrecht, Marc, 1996. "Extending the shifting bottleneck procedure to real-life applications," European Journal of Operational Research, Elsevier, vol. 90(2), pages 252-268, April.
    16. Nodari Vakhania & Frank Werner, 2021. "Branch Less, Cut More and Schedule Jobs with Release and Delivery Times on Uniform Machines," Mathematics, MDPI, vol. 9(6), pages 1-18, March.
    17. Sadykov, Ruslan, 2008. "A branch-and-check algorithm for minimizing the weighted number of late jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1284-1304, September.
    18. Giorgi Tadumadze & Simon Emde & Heiko Diefenbach, 2020. "Exact and heuristic algorithms for scheduling jobs with time windows on unrelated parallel machines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 461-497, June.
    19. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    20. Nicholas G. Hall & Zhixin Liu & Chris N. Potts, 2007. "Rescheduling for Multiple New Orders," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 633-645, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1131-:d:382811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.