IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v45y2020i2p732-754.html
   My bibliography  Save this article

Rescaling Algorithms for Linear Conic Feasibility

Author

Listed:
  • Daniel Dadush

    (Centrum Wiskunde & Informatica, 1098 XG Amsterdam, Netherlands;)

  • László A. Végh

    (Department of Mathematics, London School of Economics and Political Science, London WC2A 2AE, United Kingdom)

  • Giacomo Zambelli

    (Department of Mathematics, London School of Economics and Political Science, London WC2A 2AE, United Kingdom)

Abstract

We propose simple polynomial-time algorithms for two linear conic feasibility problems. For a matrix A ∈ ℝ m × n , the kernel problem requires a positive vector in the kernel of A , and the image problem requires a positive vector in the image of A T . Both algorithms iterate between simple first-order steps and rescaling steps. These rescalings improve natural geometric potentials. If Goffin’s condition measure ρ A is negative, then the kernel problem is feasible, and the worst-case complexity of the kernel algorithm is O ( ( m 3 n + m n 2 ) l o g | ρ A | − 1 ) ; if ρ A > 0 , then the image problem is feasible, and the image algorithm runs in time O ( m 2 n 2 ⁡ l o g ⁡ ρ A − 1 ) . We also extend the image algorithm to the oracle setting. We address the degenerate case ρ A = 0 by extending our algorithms to find maximum support nonnegative vectors in the kernel of A and in the image of A T . In this case, the running time bounds are expressed in the bit-size model of computation: for an input matrix A with integer entries and total encoding length L , the maximum support kernel algorithm runs in time O ( ( m 3 n + m n 2 ) L ) , whereas the maximum support image algorithm runs in time O ( m 2 n 2 L ) . The standard linear programming feasibility problem can be easily reduced to either maximum support problems, yielding polynomial-time algorithms for linear programming.

Suggested Citation

  • Daniel Dadush & László A. Végh & Giacomo Zambelli, 2020. "Rescaling Algorithms for Linear Conic Feasibility," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 732-754, May.
  • Handle: RePEc:inm:ormoor:v:45:y:2020:i:2:p:732-754
    DOI: 10.1287/moor.2019.1011
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/moor.2019.1011
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.2019.1011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexandre Belloni & Robert M. Freund & Santosh Vempala, 2009. "An Efficient Rescaled Perceptron Algorithm for Conic Systems," Mathematics of Operations Research, INFORMS, vol. 34(3), pages 621-641, August.
    2. Marguerite Frank & Philip Wolfe, 1956. "An algorithm for quadratic programming," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 95-110, March.
    3. Yinyu Ye, 1994. "Toward Probabilistic Analysis of Interior-Point Algorithms for Linear Programming," Mathematics of Operations Research, INFORMS, vol. 19(1), pages 38-52, February.
    4. J. L. Goffin, 1980. "The Relaxation Method for Solving Systems of Linear Inequalities," Mathematics of Operations Research, INFORMS, vol. 5(3), pages 388-414, August.
    5. Végh, László A. & Zambelli, Giacomo, 2014. "A polynomial projection-type algorithm for linear programming," LSE Research Online Documents on Economics 55610, London School of Economics and Political Science, LSE Library.
    6. NESTEROV, Yu., 2005. "Smooth minimization of non-smooth functions," LIDAM Reprints CORE 1819, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amitabh Basu & Jesús A. De Loera & Mark Junod, 2014. "On Chubanov's Method for Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 336-350, May.
    2. Ya-Feng Liu & Xin Liu & Shiqian Ma, 2019. "On the Nonergodic Convergence Rate of an Inexact Augmented Lagrangian Framework for Composite Convex Programming," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 632-650, May.
    3. Pi, J. & Wang, Honggang & Pardalos, Panos M., 2021. "A dual reformulation and solution framework for regularized convex clustering problems," European Journal of Operational Research, Elsevier, vol. 290(3), pages 844-856.
    4. Shipra Agrawal & Nikhil R. Devanur, 2019. "Bandits with Global Convex Constraints and Objective," Operations Research, INFORMS, vol. 67(5), pages 1486-1502, September.
    5. Xiaolong Qin & Nguyen Thai An, 2019. "Smoothing algorithms for computing the projection onto a Minkowski sum of convex sets," Computational Optimization and Applications, Springer, vol. 74(3), pages 821-850, December.
    6. Cheung, Dennis & Cucker, Felipe & Pea, Javier, 2009. "On strata of degenerate polyhedral cones I: Condition and distance to strata," European Journal of Operational Research, Elsevier, vol. 198(1), pages 23-28, October.
    7. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    8. Abdelfettah Laouzai & Rachid Ouafi, 2022. "A prediction model for atmospheric pollution reduction from urban traffic," Environment and Planning B, , vol. 49(2), pages 566-584, February.
    9. Epelman, Marina A., 1973-. & Freund, Robert Michael, 1997. "Condition number complexity of an elementary algorithm for resolving a conic linear system," Working papers WP 3942-97., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    10. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    11. Francesco Rinaldi & Damiano Zeffiro, 2023. "Avoiding bad steps in Frank-Wolfe variants," Computational Optimization and Applications, Springer, vol. 84(1), pages 225-264, January.
    12. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    13. Tiến-Sơn Phạm, 2019. "Optimality Conditions for Minimizers at Infinity in Polynomial Programming," Management Science, INFORMS, vol. 44(4), pages 1381-1395, November.
    14. Filippozzi, Rafaela & Gonçalves, Douglas S. & Santos, Luiz-Rafael, 2023. "First-order methods for the convex hull membership problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 17-33.
    15. Dirk Lorenz & Marc Pfetsch & Andreas Tillmann, 2014. "An infeasible-point subgradient method using adaptive approximate projections," Computational Optimization and Applications, Springer, vol. 57(2), pages 271-306, March.
    16. Ke, Ginger Y. & Zhang, Huiwen & Bookbinder, James H., 2020. "A dual toll policy for maintaining risk equity in hazardous materials transportation with fuzzy incident rate," International Journal of Production Economics, Elsevier, vol. 227(C).
    17. Friesz, Terry L. & Tourreilles, Francisco A. & Han, Anthony Fu-Wha, 1979. "Multi-Criteria Optimization Methods in Transport Project Evaluation: The Case of Rural Roads in Developing Countries," Transportation Research Forum Proceedings 1970s 318817, Transportation Research Forum.
    18. Damian Clarke & Daniel Paila~nir & Susan Athey & Guido Imbens, 2023. "Synthetic Difference In Differences Estimation," Papers 2301.11859, arXiv.org, revised Feb 2023.
    19. Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
    20. Ali Fattahi & Sriram Dasu & Reza Ahmadi, 2019. "Mass Customization and “Forecasting Options’ Penetration Rates Problem”," Operations Research, INFORMS, vol. 67(4), pages 1120-1134, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:45:y:2020:i:2:p:732-754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.