Design and Evaluation of Optimal Free Trials
Author
Abstract
Suggested Citation
DOI: 10.1287/mnsc.2022.4507
Download full text from publisher
References listed on IDEAS
- Eric M. Schwartz & Eric T. Bradlow & Peter S. Fader, 2017. "Customer Acquisition via Display Advertising Using Multi-Armed Bandit Experiments," Marketing Science, INFORMS, vol. 36(4), pages 500-522, July.
- Omid Rafieian & Hema Yoganarasimhan, 2021. "Targeting and Privacy in Mobile Advertising," Marketing Science, INFORMS, vol. 40(2), pages 193-218, March.
- Hsing Kenneth Cheng & Yipeng Liu, 2012. "Optimal Software Free Trial Strategy: The Impact of Network Externalities and Consumer Uncertainty," Information Systems Research, INFORMS, vol. 23(2), pages 488-504, June.
- Miriam Bruhn & David McKenzie, 2009.
"In Pursuit of Balance: Randomization in Practice in Development Field Experiments,"
American Economic Journal: Applied Economics, American Economic Association, vol. 1(4), pages 200-232, October.
- Bruhn, Miriam & McKenzie, David, 2008. "In pursuit of balance : randomization in practice in development field experiments," Policy Research Working Paper Series 4752, The World Bank.
- Hema Yoganarasimhan, 2020. "Search Personalization Using Machine Learning," Management Science, INFORMS, vol. 66(3), pages 1045-1070, March.
- Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
- Charles F. Manski, 2004.
"Statistical Treatment Rules for Heterogeneous Populations,"
Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
- Charles F. Manski, 2003. "Statistical treatment rules for heterogeneous populations," CeMMAP working papers CWP03/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Charles F. Manski, 2003. "Statistical treatment rules for heterogeneous populations," CeMMAP working papers 03/03, Institute for Fiscal Studies.
- Bram Foubert & Els Gijsbrechts, 2016. "Try It, You’ll Like It—Or Will You? The Perils of Early Free-Trial Promotions for High-Tech Service Adoption," Marketing Science, INFORMS, vol. 35(5), pages 810-826, September.
- Diana C. Mutz & Robin Pemantle & Philip Pham, 2019. "The Perils of Balance Testing in Experimental Design: Messy Analyses of Clean Data," The American Statistician, Taylor & Francis Journals, vol. 73(1), pages 32-42, January.
- Tyler J. VanderWeele, 2013. "Surrogate Measures and Consistent Surrogates," Biometrics, The International Biometric Society, vol. 69(3), pages 561-565, September.
- Fader, Peter S. & Hardie, Bruce G.S., 2009. "Probability Models for Customer-Base Analysis," Journal of Interactive Marketing, Elsevier, vol. 23(1), pages 61-69.
- Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, July.
- Randall A. Lewis & Justin M. Rao, 2015. "The Unfavorable Economics of Measuring the Returns to Advertising," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(4), pages 1941-1973.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Günter J. Hitsch & Sanjog Misra & Walter W. Zhang, 2024. "Heterogeneous treatment effects and optimal targeting policy evaluation," Quantitative Marketing and Economics (QME), Springer, vol. 22(2), pages 115-168, June.
- Anya Shchetkina & Ron Berman, 2024. "When Is Heterogeneity Actionable for Personalization?," Papers 2411.16552, arXiv.org.
- Ali Goli & Anja Lambrecht & Hema Yoganarasimhan, 2024. "A Bias Correction Approach for Interference in Ranking Experiments," Marketing Science, INFORMS, vol. 43(3), pages 590-614, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hema Yoganarasimhan & Ebrahim Barzegary & Abhishek Pani, 2020. "Design and Evaluation of Personalized Free Trials," Papers 2006.13420, arXiv.org.
- Lalit Jain & Zhaoqi Li & Erfan Loghmani & Blake Mason & Hema Yoganarasimhan, 2024. "Effective Adaptive Exploration of Prices and Promotions in Choice-Based Demand Models," Marketing Science, INFORMS, vol. 43(5), pages 1002-1030, September.
- Susan Athey & Guido Imbens, 2016. "The Econometrics of Randomized Experiments," Papers 1607.00698, arXiv.org.
- Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org, revised Apr 2025.
- Garrett Johnson & Julian Runge & Eric Seufert, 2022. "Privacy-Centric Digital Advertising: Implications for Research," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 9(1), pages 49-54, June.
- Ali Goli & Anja Lambrecht & Hema Yoganarasimhan, 2024. "A Bias Correction Approach for Interference in Ranking Experiments," Marketing Science, INFORMS, vol. 43(3), pages 590-614, May.
- Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024.
"At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?,"
American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
- Cl'ement de Chaisemartin & Jaime Ramirez-Cuellar, 2019. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," Papers 1906.00288, arXiv.org, revised Jun 2023.
- Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2022. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," SciencePo Working papers Main hal-03873897, HAL.
- Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2020. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," NBER Working Papers 27609, National Bureau of Economic Research, Inc.
- Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2022. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," Working Papers hal-03873897, HAL.
- Sung Jae Jun & Sokbae Lee, 2024.
"Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
- Sung Jae Jun & Sokbae Lee, 2020. "Causal Inference under Outcome-Based Sampling with Monotonicity Assumptions," Papers 2004.08318, arXiv.org, revised Oct 2023.
- Ta-Wei Huang & Eva Ascarza, 2024. "Doing More with Less: Overcoming Ineffective Long-Term Targeting Using Short-Term Signals," Marketing Science, INFORMS, vol. 43(4), pages 863-884, July.
- Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2020.
"Optimal data collection for randomized control trials,"
The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 1-31.
- Carneiro, Pedro & Lee, Sokbae & Wilhelm, Daniel, 2016. "Optimal Data Collection for Randomized Control Trials," IZA Discussion Papers 9908, Institute of Labor Economics (IZA).
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers CWP15/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers 15/17, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers 45/17, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2019. "Optimal Data Collection for Randomized Control Trials," CeMMAP working papers CWP21/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2016. "Optimal data collection for randomized control trials," CeMMAP working papers 15/16, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers CWP45/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2016. "Optimal Data Collection for Randomized Control Trials," Papers 1603.03675, arXiv.org, revised Aug 2016.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2016. "Optimal data collection for randomized control trials," CeMMAP working papers CWP15/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Sven Resnjanskij & Jens Ruhose & Simon Wiederhold & Ludger Woessmann & Katharina Wedel, 2024.
"Can Mentoring Alleviate Family Disadvantage in Adolescence? A Field Experiment to Improve Labor Market Prospects,"
Journal of Political Economy, University of Chicago Press, vol. 132(3), pages 1013-1062.
- Sven Resnjanskij & Jens Ruhose & Simon Wiederhold & Ludger Woessmann, 2021. "Can Mentoring Alleviate Family Disadvantage in Adolscence? A Field Experiment to Improve Labor-Market Prospects," CESifo Working Paper Series 8870, CESifo.
- Resnjanskij, Sven & Ruhose, Jens & Wiederhold, Simon & Woessmann, Ludger, 2021. "Can Mentoring Alleviate Family Disadvantage in Adolescence? A Field Experiment to Improve Labor-Market Prospects," IZA Discussion Papers 14097, Institute of Labor Economics (IZA).
- Resnjanskij, Sven & Ruhose, Jens & Wiederhold, Simon & Woessmann, Ludger, 2021. "Can Mentoring Alleviate Family Disadvantage in Adolescence? A Field Experiment to Improve Labor-Market Prospects," Rationality and Competition Discussion Paper Series 277, CRC TRR 190 Rationality and Competition.
- Resnjanskij, Sven & Ruhose, Jens & Wiederhold, Simon & Wößmann, Ludger, 2021. "Can Mentoring Alleviate Family Disadvantage in Adolescence? A Field Experiment to Improve Labor-Market Prospects," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242341, Verein für Socialpolitik / German Economic Association.
- Michael C Knaus, 2022.
"Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation],"
The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
- Knaus, Michael C., 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Economics Working Paper Series 2004, University of St. Gallen, School of Economics and Political Science.
- Knaus, Michael C., 2020. "Double Machine Learning Based Program Evaluation under Unconfoundedness," IZA Discussion Papers 13051, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Papers 2003.03191, arXiv.org, revised Jun 2022.
- Jeffrey Smith & Arthur Sweetman, 2016.
"Viewpoint: Estimating the causal effects of policies and programs,"
Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 871-905, August.
- Jeffrey Smith & Arthur Sweetman, 2016. "Viewpoint: Estimating the causal effects of policies and programs," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 49(3), pages 871-905, August.
- Smith, Jeffrey A. & Sweetman, Arthur, 2016. "Viewpoint: Estimating the Causal Effects of Policies and Programs," IZA Discussion Papers 10108, Institute of Labor Economics (IZA).
- Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
- Guido W. Imbens & Jeffrey M. Wooldridge, 2009.
"Recent Developments in the Econometrics of Program Evaluation,"
Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
- Guido Imbens & Jeffrey M. Wooldridge, 2008. "Recent developments in the econometrics of program evaluation," CeMMAP working papers CWP24/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Wooldridge, Jeffrey M. & Imbens, Guido, 2009. "Recent Developments in the Econometrics of Program Evaluation," Scholarly Articles 3043416, Harvard University Department of Economics.
- Imbens, Guido W. & Wooldridge, Jeffrey M., 2008. "Recent Developments in the Econometrics of Program Evaluation," IZA Discussion Papers 3640, Institute of Labor Economics (IZA).
- Guido M. Imbens & Jeffrey M. Wooldridge, 2008. "Recent Developments in the Econometrics of Program Evaluation," NBER Working Papers 14251, National Bureau of Economic Research, Inc.
- Shaheer, Noman & Chen, Liang & Yi, Jingtao & Li, Sali & Su, Huiwen, 2024. "Network effects, word of mouth, and entry performance: A study of digital freemium products," Journal of World Business, Elsevier, vol. 59(6).
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018.
"Inference Under Covariate-Adaptive Randomization,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1784-1796, October.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2015. "Inference under covariate-adaptive randomization," CeMMAP working papers CWP45/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2016. "Inference under Covariate-Adaptive Randomization," CeMMAP working papers CWP21/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2017. "Inference under covariate-adaptive randomization," CeMMAP working papers CWP25/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2015. "Inference under covariate-adaptive randomization," CeMMAP working papers 45/15, Institute for Fiscal Studies.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2016. "Inference under Covariate-Adaptive Randomization," CeMMAP working papers 21/16, Institute for Fiscal Studies.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2017. "Inference under covariate-adaptive randomization," CeMMAP working papers 25/17, Institute for Fiscal Studies.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2019.
"Inference under covariate‐adaptive randomization with multiple treatments,"
Quantitative Economics, Econometric Society, vol. 10(4), pages 1747-1785, November.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2017. "Inference under covariate-adaptive randomization with multiple treatments," CeMMAP working papers CWP34/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018. "Inference under Covariate-Adaptive Randomization with Multiple Treatments," Papers 1806.04206, arXiv.org, revised Jan 2019.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2017. "Inference under covariate-adaptive randomization with multiple treatments," CeMMAP working papers 34/17, Institute for Fiscal Studies.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2019. "Inference under covariate-adaptive randomization with multiple treatments," CeMMAP working papers CWP04/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Zhao, Anqi & Ding, Peng, 2024. "No star is good news: A unified look at rerandomization based on p-values from covariate balance tests," Journal of Econometrics, Elsevier, vol. 241(1).
- Susan Athey & Kristen Grabarz & Michael Luca & Nils Wernerfelt, 2023.
"Digital public health interventions at scale: The impact of social media advertising on beliefs and outcomes related to COVID vaccines,"
Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(5), pages 2208110120-, January.
- Susan Athey & Kristen Grabarz & Michael Luca & Nils C. Wernerfelt, 2022. "Digital Public Health Interventions at Scale: The Impact of Social Media Advertising on Beliefs and Outcomes Related to COVID Vaccines," NBER Working Papers 30273, National Bureau of Economic Research, Inc.
More about this item
Keywords
free trials; targeting; personalization; policy evaluation; field experiment; machine learning; digital marketing; Software as a Service;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:69:y:2023:i:6:p:3220-3240. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.