IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2006.13420.html
   My bibliography  Save this paper

Design and Evaluation of Personalized Free Trials

Author

Listed:
  • Hema Yoganarasimhan
  • Ebrahim Barzegary
  • Abhishek Pani

Abstract

Free trial promotions, where users are given a limited time to try the product for free, are a commonly used customer acquisition strategy in the Software as a Service (SaaS) industry. We examine how trial length affect users' responsiveness, and seek to quantify the gains from personalizing the length of the free trial promotions. Our data come from a large-scale field experiment conducted by a leading SaaS firm, where new users were randomly assigned to 7, 14, or 30 days of free trial. First, we show that the 7-day trial to all consumers is the best uniform policy, with a 5.59% increase in subscriptions. Next, we develop a three-pronged framework for personalized policy design and evaluation. Using our framework, we develop seven personalized targeting policies based on linear regression, lasso, CART, random forest, XGBoost, causal tree, and causal forest, and evaluate their performances using the Inverse Propensity Score (IPS) estimator. We find that the personalized policy based on lasso performs the best, followed by the one based on XGBoost. In contrast, policies based on causal tree and causal forest perform poorly. We then link a method's effectiveness in designing policy with its ability to personalize the treatment sufficiently without over-fitting (i.e., capture spurious heterogeneity). Next, we segment consumers based on their optimal trial length and derive some substantive insights on the drivers of user behavior in this context. Finally, we show that policies designed to maximize short-run conversions also perform well on long-run outcomes such as consumer loyalty and profitability.

Suggested Citation

  • Hema Yoganarasimhan & Ebrahim Barzegary & Abhishek Pani, 2020. "Design and Evaluation of Personalized Free Trials," Papers 2006.13420, arXiv.org.
  • Handle: RePEc:arx:papers:2006.13420
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2006.13420
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olivier Toubia & Duncan I. Simester & John R. Hauser & Ely Dahan, 2003. "Fast Polyhedral Adaptive Conjoint Estimation," Marketing Science, INFORMS, vol. 22(3), pages 273-303.
    2. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    3. Diana C. Mutz & Robin Pemantle & Philip Pham, 2019. "The Perils of Balance Testing in Experimental Design: Messy Analyses of Clean Data," The American Statistician, Taylor & Francis Journals, vol. 73(1), pages 32-42, January.
    4. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    5. Hema Yoganarasimhan, 2020. "Search Personalization Using Machine Learning," Management Science, INFORMS, vol. 66(3), pages 1045-1070, March.
    6. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    7. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    8. Daria Dzyabura & John R. Hauser, 2011. "Active Machine Learning for Consideration Heuristics," Marketing Science, INFORMS, vol. 30(5), pages 801-819, September.
    9. Hsing Kenneth Cheng & Yipeng Liu, 2012. "Optimal Software Free Trial Strategy: The Impact of Network Externalities and Consumer Uncertainty," Information Systems Research, INFORMS, vol. 23(2), pages 488-504, June.
    10. Fader, Peter S. & Hardie, Bruce G.S., 2009. "Probability Models for Customer-Base Analysis," Journal of Interactive Marketing, Elsevier, vol. 23(1), pages 61-69.
    11. Athey, Susan & Wager, Stefan, 2017. "Efficient Policy Learning," Research Papers 3506, Stanford University, Graduate School of Business.
    12. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
    13. Bram Foubert & Els Gijsbrechts, 2016. "Try It, You’ll Like It—Or Will You? The Perils of Early Free-Trial Promotions for High-Tech Service Adoption," Marketing Science, INFORMS, vol. 35(5), pages 810-826, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Proserpio & John R. Hauser & Xiao Liu & Tomomichi Amano & Alex Burnap & Tong Guo & Dokyun (DK) Lee & Randall Lewis & Kanishka Misra & Eric Schwarz & Artem Timoshenko & Lilei Xu & Hema Yoganaras, 2020. "Soul and machine (learning)," Marketing Letters, Springer, vol. 31(4), pages 393-404, December.
    2. Paul B. Ellickson & Wreetabrata Kar & James C. Reeder, 2023. "Estimating Marketing Component Effects: Double Machine Learning from Targeted Digital Promotions," Marketing Science, INFORMS, vol. 42(4), pages 704-728, July.
    3. Walter W. Zhang & Sanjog Misra, 2022. "Coarse Personalization," Papers 2204.05793, arXiv.org, revised Aug 2024.
    4. Adam N. Smith & Stephan Seiler & Ishant Aggarwal, 2021. "Optimal Price Targeting," CESifo Working Paper Series 9439, CESifo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hema Yoganarasimhan & Ebrahim Barzegary & Abhishek Pani, 2023. "Design and Evaluation of Optimal Free Trials," Management Science, INFORMS, vol. 69(6), pages 3220-3240, June.
    2. Zhengyuan Zhou & Susan Athey & Stefan Wager, 2023. "Offline Multi-Action Policy Learning: Generalization and Optimization," Operations Research, INFORMS, vol. 71(1), pages 148-183, January.
    3. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    4. Davide Viviano & Jelena Bradic, 2020. "Fair Policy Targeting," Papers 2005.12395, arXiv.org, revised Jun 2022.
    5. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    6. Mert Demirer & Vasilis Syrgkanis & Greg Lewis & Victor Chernozhukov, 2019. "Semi-Parametric Efficient Policy Learning with Continuous Actions," CeMMAP working papers CWP34/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Rina Friedberg & Julie Tibshirani & Susan Athey & Stefan Wager, 2018. "Local Linear Forests," Papers 1807.11408, arXiv.org, revised Sep 2020.
    9. Xinkun Nie & Stefan Wager, 2017. "Quasi-Oracle Estimation of Heterogeneous Treatment Effects," Papers 1712.04912, arXiv.org, revised Aug 2020.
    10. Anders Bredahl Kock & Martin Thyrsgaard, 2017. "Optimal sequential treatment allocation," Papers 1705.09952, arXiv.org, revised Aug 2018.
    11. Susan Athey & Raj Chetty & Guido Imbens, 2020. "Combining Experimental and Observational Data to Estimate Treatment Effects on Long Term Outcomes," Papers 2006.09676, arXiv.org.
    12. Yuchen Hu & Henry Zhu & Emma Brunskill & Stefan Wager, 2024. "Minimax-Regret Sample Selection in Randomized Experiments," Papers 2403.01386, arXiv.org, revised Jun 2024.
    13. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
    14. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
    15. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    16. Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
    17. Henrika Langen & Martin Huber, 2022. "How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign," Papers 2204.10820, arXiv.org, revised Jun 2022.
    18. Yu-Chang Chen & Haitian Xie, 2022. "Personalized Subsidy Rules," Papers 2202.13545, arXiv.org, revised Mar 2022.
    19. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    20. Nathan Kallus, 2022. "Treatment Effect Risk: Bounds and Inference," Papers 2201.05893, arXiv.org, revised Jul 2022.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2006.13420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.