IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v68y2022i5p3703-3725.html
   My bibliography  Save this article

A Consensus Algorithm for Linear Support Vector Machines

Author

Listed:
  • Haimonti Dutta

    (Department of Management Science and Systems and Institute for Computational and Data Science, The State University of New York at Buffalo, Buffalo, New York 14260)

Abstract

In the era of big data, an important weapon in a machine learning researcher’s arsenal is a scalable support vector machine (SVM) algorithm. Traditional algorithms for learning SVMs scale superlinearly with the training set size, which becomes infeasible quickly for large data sets. In recent years, scalable algorithms have been designed which study the primal or dual formulations of the problem. These often suggest a way to decompose the problem and facilitate development of distributed algorithms. In this paper, we present a distributed algorithm for learning linear SVMs in the primal form for binary classification called the gossip-based subgradient (GADGET) SVM. The algorithm is designed such that it can be executed locally on sites of a distributed system. Each site processes its local homogeneously partitioned data and learns a primal SVM model; it then gossips with random neighbors about the classifier learnt and uses this information to update the model. To learn the model, the SVM optimization problem is solved using several techniques, including a gradient estimation procedure, stochastic gradient descent method, and several variants including minibatches of varying sizes. Our theoretical results indicate that the rate at which the GADGET SVM algorithm converges to the global optimum at each site is dominated by an O ( 1 λ ) term, where λ measures the degree of convexity of the function at the site. Empirical results suggest that this anytime algorithm—where the quality of results improve gradually as computation time increases—has performance comparable to its centralized, pseudodistributed, and other state-of-the-art gossip-based SVM solvers. It is at least 1.5 times (often several orders of magnitude) faster than other gossip-based SVM solvers known in literature and has a message complexity of O ( d ) per iteration, where d represents the number of features of the data set. Finally, a large-scale case study is presented wherein the consensus-based SVM algorithm is used to predict failures of advanced mechanical components in a chocolate manufacturing process using more than one million data points.

Suggested Citation

  • Haimonti Dutta, 2022. "A Consensus Algorithm for Linear Support Vector Machines," Management Science, INFORMS, vol. 68(5), pages 3703-3725, May.
  • Handle: RePEc:inm:ormnsc:v:68:y:2022:i:5:p:3703-3725
    DOI: 10.1287/mnsc.2021.4042
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2021.4042
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2021.4042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander Zadorojniy & Segev Wasserkrug & Sergey Zeltyn & Vladimir Lipets, 2017. "IBM Cognitive Technology Helps Aqualia to Reduce Costs and Save Resources in Wastewater Treatment," Interfaces, INFORMS, vol. 47(5), pages 411-424, October.
    2. Linguo Gong & Wushong Jwo & Kwei Tang, 1997. "Using On-Line Sensors in Statistical Process Control," Management Science, INFORMS, vol. 43(7), pages 1017-1028, July.
    3. Don G. Wardell & Herbert Moskowitz & Robert D. Plante, 1992. "Control Charts in the Presence of Data Correlation," Management Science, INFORMS, vol. 38(8), pages 1084-1105, August.
    4. Mark Cecchini & Haldun Aytug & Gary J. Koehler & Praveen Pathak, 2010. "Detecting Management Fraud in Public Companies," Management Science, INFORMS, vol. 56(7), pages 1146-1160, July.
    5. S. Sundhar Ram & A. Nedić & V. V. Veeravalli, 2010. "Distributed Stochastic Subgradient Projection Algorithms for Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 516-545, December.
    6. Dennis J. Zhang & Hengchen Dai & Lingxiu Dong & Qian Wu & Lifan Guo & Xiaofei Liu, 2019. "The Value of Pop-Up Stores on Retailing Platforms: Evidence from a Field Experiment with Alibaba," Management Science, INFORMS, vol. 65(11), pages 5142-5151, November.
    7. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    8. Edoardo Fadda & Luca Gobbato & Guido Perboli & Mariangela Rosano & Roberto Tadei, 2018. "Waste Collection in Urban Areas: A Case Study," Interfaces, INFORMS, vol. 48(4), pages 307-322, August.
    9. Zhepeng Li & Xiao Fang & Xue Bai & Olivia R. Liu Sheng, 2017. "Utility-Based Link Recommendation for Online Social Networks," Management Science, INFORMS, vol. 63(6), pages 1938-1952, June.
    10. Bradley R. Staats & Hengchen Dai & David Hofmann & Katherine L. Milkman, 2017. "Motivating Process Compliance Through Individual Electronic Monitoring: An Empirical Examination of Hand Hygiene in Healthcare," Management Science, INFORMS, vol. 63(5), pages 1563-1585, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    3. Neslin, Scott A., 2022. "The omnichannel continuum: Integrating online and offline channels along the customer journey," Journal of Retailing, Elsevier, vol. 98(1), pages 111-132.
    4. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    5. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    6. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    7. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    8. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    10. Heng Chen & Daniel F. Heitjan, 2022. "Analysis of local sensitivity to nonignorability with missing outcomes and predictors," Biometrics, The International Biometric Society, vol. 78(4), pages 1342-1352, December.
    11. S Ariane Christie & Amanda S Conroy & Rachael A Callcut & Alan E Hubbard & Mitchell J Cohen, 2019. "Dynamic multi-outcome prediction after injury: Applying adaptive machine learning for precision medicine in trauma," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-13, April.
    12. Zhu Wang, 2022. "MM for penalized estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 54-75, March.
    13. Ida Kubiszewski & Kenneth Mulder & Diane Jarvis & Robert Costanza, 2022. "Toward better measurement of sustainable development and wellbeing: A small number of SDG indicators reliably predict life satisfaction," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 139-148, February.
    14. Gustavo A. Alonso-Silverio & Víctor Francisco-García & Iris P. Guzmán-Guzmán & Elías Ventura-Molina & Antonio Alarcón-Paredes, 2021. "Toward Non-Invasive Estimation of Blood Glucose Concentration: A Comparative Performance," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    15. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    16. Naimoli, Antonio, 2022. "Modelling the persistence of Covid-19 positivity rate in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    17. Ion IVAN & Cristian CIUREA & Mihai DOINEA & Arthur AVRAMIEA, 2012. "Collaborative Management of Risks and Complexity in Banking Systems," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 16(2), pages 128-141.
    18. Gurgul Henryk & Machno Artur, 2017. "Trade Pattern on Warsaw Stock Exchange and Prediction of Number of Trades," Statistics in Transition New Series, Statistics Poland, vol. 18(1), pages 91-114, March.
    19. Ahmed Ismaïl & Hartikainen Anna-Liisa & Järvelin Marjo-Riitta & Richardson Sylvia, 2011. "False Discovery Rate Estimation for Stability Selection: Application to Genome-Wide Association Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-20, November.
    20. Vitaly Meursault & Daniel Moulton & Larry Santucci & Nathan Schor, 2022. "One Threshold Doesn’t Fit All: Tailoring Machine Learning Predictions of Consumer Default for Lower-Income Areas," Working Papers 22-39, Federal Reserve Bank of Philadelphia.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:68:y:2022:i:5:p:3703-3725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.