IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v67y2021i12p7344-7361.html
   My bibliography  Save this article

The Interplay Between Online Reviews and Physician Demand: An Empirical Investigation

Author

Listed:
  • Yuqian Xu

    (Department of Technology, Operations, and Statistics, Department of Business Administration, Gies College of Business, University of Illinois at Urbana-Champaign, Illinois 61820)

  • Mor Armony

    (Stern Business School, New York University, New York, New York 10012)

  • Anindya Ghose

    (Stern Business School, New York University, New York, New York 10012)

Abstract

Social media platforms for healthcare services are changing how patients choose physicians. The digitization of healthcare reviews has been providing additional information to patients when choosing their physicians. On the other hand, the growing online information introduces more uncertainty among providers regarding the expected future demand and how different service features can affect patient decisions. In this paper, we derive various service-quality proxies from online reviews and show that leveraging textual information can derive useful operational measures to better understand patient choices. To do so, we study a unique data set from one of the leading appointment-booking websites in the United States. We derive from the text reviews the seven most frequently mentioned topics among patients, namely, bedside manner, diagnosis accuracy, waiting time, service time, insurance process, physician knowledge, and office environment, and then incorporate these service features into a random-coefficient choice model to quantify the economic values of these service-quality proxies. By introducing quality proxies from text reviews, we find the predictive power of patient choice increases significantly, for example, a 6%–12% improvement measured by mean squared error for both in-sample and out-of-sample tests. In addition, our estimation results indicate that contextual description may better characterize users’ perceived quality than numerical ratings on the same service feature. Broadly speaking, this paper shows how to incorporate textual information into an econometric model to understand patient choice in healthcare delivery. Our interdisciplinary approach provides a framework that combines machine learning and structural modeling techniques to advance the literature in empirical operations management, information systems, and marketing.

Suggested Citation

  • Yuqian Xu & Mor Armony & Anindya Ghose, 2021. "The Interplay Between Online Reviews and Physician Demand: An Empirical Investigation," Management Science, INFORMS, vol. 67(12), pages 7344-7361, December.
  • Handle: RePEc:inm:ormnsc:v:67:y:2021:i:12:p:7344-7361
    DOI: 10.1287/mnsc.2020.3879
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2020.3879
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2020.3879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joel H. Steckel & Wilfried R. Vanhonacker, 1993. "Cross-Validating Regression Models in Marketing Research," Marketing Science, INFORMS, vol. 12(4), pages 415-427.
    2. Chunhua Wu & Hai Che & Tat Y. Chan & Xianghua Lu, 2015. "The Economic Value of Online Reviews," Marketing Science, INFORMS, vol. 34(5), pages 739-754, September.
    3. Ruomeng Cui & Santiago Gallino & Antonio Moreno & Dennis J. Zhang, 2018. "The Operational Value of Social Media Information," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1749-1769, October.
    4. Nevo, Aviv, 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry," Econometrica, Econometric Society, vol. 69(2), pages 307-342, March.
    5. Jerry A. Hausman, 1996. "Valuation of New Goods under Perfect and Imperfect Competition," NBER Chapters, in: The Economics of New Goods, pages 207-248, National Bureau of Economic Research, Inc.
    6. David Godes & Dina Mayzlin, 2004. "Using Online Conversations to Study Word-of-Mouth Communication," Marketing Science, INFORMS, vol. 23(4), pages 545-560, June.
    7. Tay, Abigail, 2003. "Assessing Competition in Hospital Care Markets: The Importance of Accounting for Quality Differentiation," RAND Journal of Economics, The RAND Corporation, vol. 34(4), pages 786-814, Winter.
    8. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    9. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
    10. Guihua Wang & Jun Li & Wallace J. Hopp & Franco L. Fazzalari & Steven F. Bolling, 2019. "Using Patient-Specific Quality Information to Unlock Hidden Healthcare Capabilities," Manufacturing & Service Operations Management, INFORMS, vol. 21(3), pages 582-601, July.
    11. Chris Forman & Anindya Ghose & Batia Wiesenfeld, 2008. "Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets," Information Systems Research, INFORMS, vol. 19(3), pages 291-313, September.
    12. Varkevisser, Marco & van der Geest, Stéphanie A. & Schut, Frederik T., 2012. "Do patients choose hospitals with high quality ratings? Empirical evidence from the market for angioplasty in the Netherlands," Journal of Health Economics, Elsevier, vol. 31(2), pages 371-378.
    13. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2012. "Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowdsourced Content," Marketing Science, INFORMS, vol. 31(3), pages 493-520, May.
    14. Nan Liu & Stacey R. Finkelstein & Margaret E. Kruk & David Rosenthal, 2018. "When Waiting to See a Doctor Is Less Irritating: Understanding Patient Preferences and Choice Behavior in Appointment Scheduling," Management Science, INFORMS, vol. 64(5), pages 1975-1996, May.
    15. Steven T. Berry, 1994. "Estimating Discrete-Choice Models of Product Differentiation," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 242-262, Summer.
    16. Jing Dong & Elad Yom-Tov & Galit B. Yom-Tov, 2019. "The Impact of Delay Announcements on Hospital Network Coordination and Waiting Times," Management Science, INFORMS, vol. 67(5), pages 1969-1994, May.
    17. J. Miguel Villas-Boas & Russell S. Winer, 1999. "Endogeneity in Brand Choice Models," Management Science, INFORMS, vol. 45(10), pages 1324-1338, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shan, Wei & Wang, Jiaxuan & Shi, Xiaoxiao & David Evans, Richard, 2024. "The impact of electronic word-of-mouth on patients’ choices in online health communities: A cross-media perspective," Journal of Business Research, Elsevier, vol. 173(C).
    2. Borchert, Philipp & Coussement, Kristof & De Weerdt, Jochen & De Caigny, Arno, 2024. "Industry-sensitive language modeling for business," European Journal of Operational Research, Elsevier, vol. 315(2), pages 691-702.
    3. Jiao, Hao & Wang, Lindong & Yang, Jifeng, 2023. "Standing head and shoulders above others? Complementor experience-based design and crowdfunding success on digital platforms," Technovation, Elsevier, vol. 128(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2012. "Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowdsourced Content," Marketing Science, INFORMS, vol. 31(3), pages 493-520, May.
    2. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    3. Pei-Yu Chen & Yili Hong & Ying Liu, 2018. "The Value of Multidimensional Rating Systems: Evidence from a Natural Experiment and Randomized Experiments," Management Science, INFORMS, vol. 64(10), pages 4629-4647, October.
    4. Weijia (Daisy) Dai & Ginger Jin & Jungmin Lee & Michael Luca, 2018. "Aggregation of consumer ratings: an application to Yelp.com," Quantitative Marketing and Economics (QME), Springer, vol. 16(3), pages 289-339, September.
    5. Thomas E. Guerrero & C. Angelo Guevara & Elisabetta Cherchi & Juan de Dios Ortúzar, 2021. "Addressing endogeneity in strategic urban mode choice models," Transportation, Springer, vol. 48(4), pages 2081-2102, August.
    6. Sulin Ba & Yuan Jin & Xinxin Li & Xianghua Lu, 2020. "One Size Fits All? The Differential Impact of Online Reviews and Coupons," Production and Operations Management, Production and Operations Management Society, vol. 29(10), pages 2403-2424, October.
    7. Yonezawa, Koichi & Richards, Timothy J., 2016. "Competitive Package Size Decisions," Journal of Retailing, Elsevier, vol. 92(4), pages 445-469.
    8. Christoph Schneider & Markus Weinmann & Peter N.C. Mohr & Jan vom Brocke, 2021. "When the Stars Shine Too Bright: The Influence of Multidimensional Ratings on Online Consumer Ratings," Management Science, INFORMS, vol. 67(6), pages 3871-3898, June.
    9. Ashish Agarwal & Kartik Hosanagar & Michael D. Smith, 2015. "Do Organic Results Help or Hurt Sponsored Search Performance?," Information Systems Research, INFORMS, vol. 26(4), pages 695-713, December.
    10. Ashish Agarwal & Tridas Mukhopadhyay, 2016. "The Impact of Competing Ads on Click Performance in Sponsored Search," Information Systems Research, INFORMS, vol. 27(3), pages 538-557.
    11. Mochen Yang & Gediminas Adomavicius & Gordon Burtch & Yuqing Rena, 2018. "Mind the Gap: Accounting for Measurement Error and Misclassification in Variables Generated via Data Mining," Information Systems Research, INFORMS, vol. 29(1), pages 4-24, March.
    12. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2019. "Modeling Consumer Footprints on Search Engines: An Interplay with Social Media," Management Science, INFORMS, vol. 65(3), pages 1363-1385, March.
    13. Mochen Yang & Yuqing Ren & Gediminas Adomavicius, 2019. "Understanding User-Generated Content and Customer Engagement on Facebook Business Pages," Information Systems Research, INFORMS, vol. 30(3), pages 839-855, September.
    14. Donna, Javier D. & Pereira, Pedro & Trindade, Andre & Yoshida, Renan C., 2020. "Direct-to-Consumer Sales by Manufacturers and Bargaining," MPRA Paper 105773, University Library of Munich, Germany.
    15. Allais, Olivier & Etilé, Fabrice & Lecocq, Sébastien, 2015. "Mandatory labels, taxes and market forces: An empirical evaluation of fat policies," Journal of Health Economics, Elsevier, vol. 43(C), pages 27-44.
    16. Lurkin, Virginie & Garrow, Laurie A. & Higgins, Matthew J. & Newman, Jeffrey P. & Schyns, Michael, 2017. "Accounting for price endogeneity in airline itinerary choice models: An application to Continental U.S. markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 228-246.
    17. Nevo, Aviv, 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry," Econometrica, Econometric Society, vol. 69(2), pages 307-342, March.
    18. Daniel Toro-Gonzalez & Jia Yan & R. Karina Gallardo & Jill J. McCluskey, 2013. "Estimation of Unobserved Attributes Using a Control Function Approach, Modeling the Demand for Mint Flavored Gum," Working Papers 2013-06, School of Economic Sciences, Washington State University.
    19. Bimbo, Francesco & Bonanno, Alessandro & Viscecchia, Rosaria, 2019. "An empirical framework to study food labelling fraud: an application to the Italian extra-virgin olive oil market," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    20. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:67:y:2021:i:12:p:7344-7361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.