IDEAS home Printed from https://ideas.repec.org/a/inm/orisre/v30y2019i3p839-855.html
   My bibliography  Save this article

Understanding User-Generated Content and Customer Engagement on Facebook Business Pages

Author

Listed:
  • Mochen Yang

    (Kelley School of Business, Indiana University, Bloomington, Indiana 47405)

  • Yuqing Ren

    (Carlson School of Management, University of Minnesota, Minneapolis, Minnesota 55455)

  • Gediminas Adomavicius

    (Carlson School of Management, University of Minnesota, Minneapolis, Minnesota 55455)

Abstract

With the growth and prevalence of social media platforms, many companies have been using them to engage with customers and encourage user-generated content (UGC) about their products and services. However, there has not been much research on the characteristics of UGC on these platforms and, correspondingly, their impact on customer engagement. In this paper, we analyze user-generated posts from Facebook business pages of multiple companies to understand what users post on Facebook business pages and how post valence and content characteristics affect engagement, measured as the number of likes and comments received by a post. We control for a variety of factors, including post linguistic features, poster characteristics, and post context heterogeneity. Our analysis demonstrates that for user-generated posts on Facebook business pages, negative posts are significantly more prevalent than positive posts, which contrasts with the J-shaped valence distribution of online consumer reviews. We also show that engagement depends not only on the valence of a post but also on the specific ways in which a post is positive or negative. We observe three types of customer complaints, respectively, related to product and service quality, money issues, and social and environmental issues. Our analyses show that social complaints receive more likes, but fewer comments, than quality or money complaints. Such nuances can only be uncovered by analyzing the actual post content, going beyond the valence of the posts. Furthermore, we theoretically discuss and empirically demonstrate that liking and commenting are engagement behaviors with different antecedents. For example, positive posts tend to attract more likes yet fewer comments than neutral posts. Overall, our research shows that user-generated posts on Facebook business pages represent a distinctive form of UGC that is conceptually different from online consumer reviews. Our work advances the knowledge on UGC and has practical implications for firms’ social media marketing strategy.

Suggested Citation

  • Mochen Yang & Yuqing Ren & Gediminas Adomavicius, 2019. "Understanding User-Generated Content and Customer Engagement on Facebook Business Pages," Information Systems Research, INFORMS, vol. 30(3), pages 839-855, September.
  • Handle: RePEc:inm:orisre:v:30:y:2019:i:3:p:839-855
    DOI: 10.1287/isre.2019.0834
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/isre.2019.0834
    Download Restriction: no

    File URL: https://libkey.io/10.1287/isre.2019.0834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    2. Unknown, 1967. "Index," 1967 Conference, August 21-30, 1967, Sydney, New South Wales, Australia 209796, International Association of Agricultural Economists.
    3. Sinan Aral & Chrysanthos Dellarocas & David Godes, 2013. "Introduction to the Special Issue ---Social Media and Business Transformation: A Framework for Research," Information Systems Research, INFORMS, vol. 24(1), pages 3-13, March.
    4. Yinlong Zhang & Lawrence Feick & Vikas Mittal, 2014. "How Males and Females Differ in Their Likelihood of Transmitting Negative Word of Mouth," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 40(6), pages 1097-1108.
    5. Xianghua Lu & Sulin Ba & Lihua Huang & Yue Feng, 2013. "Promotional Marketing or Word-of-Mouth? Evidence from Online Restaurant Reviews," Information Systems Research, INFORMS, vol. 24(3), pages 596-612, September.
    6. Johanna Gummerus & Veronica Liljander & Emil Weman & Minna Pihlström, 2012. "Customer engagement in a Facebook brand community," Management Research Review, Emerald Group Publishing Limited, vol. 35(9), pages 857-877, August.
    7. Anonymous, 2013. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 8(2), pages 129-130, November.
    8. David Godes & Dina Mayzlin, 2009. "Firm-Created Word-of-Mouth Communication: Evidence from a Field Test," Marketing Science, INFORMS, vol. 28(4), pages 721-739, 07-08.
    9. Dokyun Lee & Kartik Hosanagar & Harikesh S. Nair, 2018. "Advertising Content and Consumer Engagement on Social Media: Evidence from Facebook," Management Science, INFORMS, vol. 64(11), pages 5105-5131, November.
    10. Liye Ma & Baohong Sun & Sunder Kekre, 2015. "The Squeaky Wheel Gets the Grease—An Empirical Analysis of Customer Voice and Firm Intervention on Twitter," Marketing Science, INFORMS, vol. 34(5), pages 627-645, September.
    11. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
    12. Yubo Chen & Jinhong Xie, 2008. "Online Consumer Review: Word-of-Mouth as a New Element of Marketing Communication Mix," Management Science, INFORMS, vol. 54(3), pages 477-491, March.
    13. Chris Forman & Anindya Ghose & Batia Wiesenfeld, 2008. "Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets," Information Systems Research, INFORMS, vol. 19(3), pages 291-313, September.
    14. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2012. "Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowdsourced Content," Marketing Science, INFORMS, vol. 31(3), pages 493-520, May.
    15. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.
    16. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    17. Steven L. Johnson & Hani Safadi & Samer Faraj, 2015. "The Emergence of Online Community Leadership," Information Systems Research, INFORMS, vol. 26(1), pages 165-187, March.
    18. Anonymous, 2013. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 8(3), pages 243-243, December.
    19. David Godes & Dina Mayzlin, 2004. "Using Online Conversations to Study Word-of-Mouth Communication," Marketing Science, INFORMS, vol. 23(4), pages 545-560, June.
    20. Smith, Andrew N. & Fischer, Eileen & Yongjian, Chen, 2012. "How Does Brand-related User-generated Content Differ across YouTube, Facebook, and Twitter?," Journal of Interactive Marketing, Elsevier, vol. 26(2), pages 102-113.
    21. Xiaoqing Wang & Brian S. Butler & Yuqing Ren, 2013. "The Impact of Membership Overlap on Growth: An Ecological Competition View of Online Groups," Organization Science, INFORMS, vol. 24(2), pages 414-431, April.
    22. Brodie, Roderick J. & Ilic, Ana & Juric, Biljana & Hollebeek, Linda, 2013. "Consumer engagement in a virtual brand community: An exploratory analysis," Journal of Business Research, Elsevier, vol. 66(1), pages 105-114.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angela Aerry Choi & Daegon Cho & Dobin Yim & Jae Yun Moon & Wonseok Oh, 2019. "When Seeing Helps Believing: The Interactive Effects of Previews and Reviews on E-Book Purchases," Information Systems Research, INFORMS, vol. 30(4), pages 1164-1183, December.
    2. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    3. Young Kwark & Gene Moo Lee & Paul A. Pavlou & Liangfei Qiu, 2021. "On the Spillover Effects of Online Product Reviews on Purchases: Evidence from Clickstream Data," Information Systems Research, INFORMS, vol. 32(3), pages 895-913, September.
    4. Mochen Yang & Gediminas Adomavicius & Gordon Burtch & Yuqing Rena, 2018. "Mind the Gap: Accounting for Measurement Error and Misclassification in Variables Generated via Data Mining," Information Systems Research, INFORMS, vol. 29(1), pages 4-24, March.
    5. Jorge Mejia & Shawn Mankad & Anandasivam Gopal, 2019. "A for Effort? Using the Crowd to Identify Moral Hazard in New York City Restaurant Hygiene Inspections," Information Systems Research, INFORMS, vol. 30(4), pages 1363-1386, December.
    6. Bertschek, Irene & Kesler, Reinhold, 2022. "Let the user speak: Is feedback on Facebook a source of firms’ innovation?," Information Economics and Policy, Elsevier, vol. 60(C).
    7. Tingting Song & Jinghua Huang & Yong Tan & Yifan Yu, 2019. "Using User- and Marketer-Generated Content for Box Office Revenue Prediction: Differences Between Microblogging and Third-Party Platforms," Service Science, INFORMS, vol. 30(1), pages 191-203, March.
    8. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.
    9. Heeseung Andrew Lee & Angela Aerry Choi & Tianshu Sun & Wonseok Oh, 2021. "Reviewing Before Reading? An Empirical Investigation of Book-Consumption Patterns and Their Effects on Reviews and Sales," Information Systems Research, INFORMS, vol. 32(4), pages 1368-1389, December.
    10. Sheng, Jie & Amankwah-Amoah, Joseph & Wang, Xiaojun, 2017. "A multidisciplinary perspective of big data in management research," International Journal of Production Economics, Elsevier, vol. 191(C), pages 97-112.
    11. Nigam, Nirjhar & Benetti, Cristiane & Johan, Sofia A., 2020. "Digital start-up access to venture capital financing: What signals quality?," Emerging Markets Review, Elsevier, vol. 45(C).
    12. Tajvidi, Mina & Richard, Marie-Odile & Wang, YiChuan & Hajli, Nick, 2020. "Brand co-creation through social commerce information sharing: The role of social media," Journal of Business Research, Elsevier, vol. 121(C), pages 476-486.
    13. Yufei Zhang & Clay M. Voorhees & G. Tomas M. Hult, 2024. "Dynamic interplays between online reviews and marketing promotions," Journal of the Academy of Marketing Science, Springer, vol. 52(6), pages 1820-1841, November.
    14. Yanni Ping & Chelsey Hill & Yun Zhu & Jorge Fresneda, 2023. "Antecedents and consequences of the key opinion leader status: an econometric and machine learning approach," Electronic Commerce Research, Springer, vol. 23(3), pages 1459-1484, September.
    15. Ajaya Kumar Swain & Ray Qing Cao, 2019. "Using sentiment analysis to improve supply chain intelligence," Information Systems Frontiers, Springer, vol. 21(2), pages 469-484, April.
    16. Yuqian Xu & Mor Armony & Anindya Ghose, 2021. "The Interplay Between Online Reviews and Physician Demand: An Empirical Investigation," Management Science, INFORMS, vol. 67(12), pages 7344-7361, December.
    17. Ravneet Singh Bhandari & Ajay Bansal, 2018. "A Comparison of Psychological and Socio-economic Factors Affecting Individual User’s Social Media Behaviour," FIIB Business Review, , vol. 7(2), pages 126-134, June.
    18. Sulin Ba & Yuan Jin & Xinxin Li & Xianghua Lu, 2020. "One Size Fits All? The Differential Impact of Online Reviews and Coupons," Production and Operations Management, Production and Operations Management Society, vol. 29(10), pages 2403-2424, October.
    19. Braojos-Gomez, Jessica & Benitez-Amado, Jose & Javier Llorens-Montes, F., 2015. "How do small firms learn to develop a social media competence?," International Journal of Information Management, Elsevier, vol. 35(4), pages 443-458.
    20. Floyd, Kristopher & Freling, Ryan & Alhoqail, Saad & Cho, Hyun Young & Freling, Traci, 2014. "How Online Product Reviews Affect Retail Sales: A Meta-analysis," Journal of Retailing, Elsevier, vol. 90(2), pages 217-232.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orisre:v:30:y:2019:i:3:p:839-855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.