IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v37y2018i4p530-552.html
   My bibliography  Save this article

The Power of Rankings: Quantifying the Effect of Rankings on Online Consumer Search and Purchase Decisions

Author

Listed:
  • Raluca M. Ursu

    (Stern School of Business, New York University, New York, New York 10012)

Abstract

Online search intermediaries, such as Amazon or Expedia, use rankings (ordered lists) to present third-party sellers’ products to consumers. These rankings decrease consumer search costs and increase the probability of a match with a seller, ultimately increasing consumer welfare. Constructing relevant rankings requires understanding their causal effect on consumer choices. However, this is challenging because rankings are endogenous: consumers pay more attention to highly ranked products, and intermediaries rank the most relevant products at the top. In this paper, I use the first data set with experimental variation in the ranking from a field experiment at Expedia to make three contributions. First, I identify the causal effect of rankings and show that they affect what consumers search, but conditional on search, do not affect purchases. Second, I quantify the effect of rankings using a sequential search model and find an average position effect of $1.92, which is lower than literature estimates obtained without experimental variation. I also use model predictions, data patterns, and a feature of the data set (opaque offers) to show rankings lower search costs, instead of affecting consumer expectations or utility. Finally, I show a utility-based ranking built on this model’s estimates benefits consumers and the search intermediary.

Suggested Citation

  • Raluca M. Ursu, 2018. "The Power of Rankings: Quantifying the Effect of Rankings on Online Consumer Search and Purchase Decisions," Marketing Science, INFORMS, vol. 37(4), pages 530-552, August.
  • Handle: RePEc:inm:ormksc:v:37:y:2018:i:4:p:530-552
    DOI: 10.1287/mksc.2017.1072
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/mksc.2017.1072
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.2017.1072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Susan Athey & Glenn Ellison, 2011. "Position Auctions with Consumer Search," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(3), pages 1213-1270.
    2. Ali Hortaçsu & Chad Syverson, 2004. "Product Differentiation, Search Costs, and Competition in the Mutual Fund Industry: A Case Study of S&P 500 Index Funds," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(2), pages 403-456.
    3. Harikesh S. Nair & Sanjog Misra & William J. Hornbuckle IV & Ranjan Mishra & Anand Acharya, 2017. "Big Data and Marketing Analytics in Gaming: Combining Empirical Models and Field Experimentation," Marketing Science, INFORMS, vol. 36(5), pages 699-725, September.
    4. Sergei Koulayev, 2014. "Search for differentiated products: identification and estimation," RAND Journal of Economics, RAND Corporation, vol. 45(3), pages 553-575, September.
    5. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    6. Sridhar Narayanan & Kirthi Kalyanam, 2015. "Position Effects in Search Advertising and their Moderators: A Regression Discontinuity Approach," Marketing Science, INFORMS, vol. 34(3), pages 388-407, May.
    7. Jerry A. Hausman, 1996. "Valuation of New Goods under Perfect and Imperfect Competition," NBER Chapters, in: The Economics of New Goods, pages 207-248, National Bureau of Economic Research, Inc.
    8. Timothy F. Bresnahan & Robert J. Gordon, 1996. "The Economics of New Goods," NBER Books, National Bureau of Economic Research, Inc, number bres96-1, June.
    9. Jun B. Kim & Paulo Albuquerque & Bart J. Bronnenberg, 2010. "Online Demand Under Limited Consumer Search," Marketing Science, INFORMS, vol. 29(6), pages 1001-1023, 11-12.
    10. Babur De los Santos & Sergei Koulayev, 2017. "Optimizing Click-Through in Online Rankings with Endogenous Search Refinement," Marketing Science, INFORMS, vol. 36(4), pages 542-564, July.
    11. Thomas Blake & Chris Nosko & Steven Tadelis, 2015. "Consumer Heterogeneity and Paid Search Effectiveness: A Large‐Scale Field Experiment," Econometrica, Econometric Society, vol. 83, pages 155-174, January.
    12. Baye, Michael R. & De los Santos, Babur & Wildenbeest, Matthijs R., 2016. "What’s in a name? Measuring prominence and its impact on organic traffic from search engines," Information Economics and Policy, Elsevier, vol. 34(C), pages 44-57.
    13. Jun B. Kim & Paulo Albuquerque & Bart J. Bronnenberg, 2017. "The Probit Choice Model Under Sequential Search with an Application to Online Retailing," Management Science, INFORMS, vol. 63(11), pages 3911-3929, November.
    14. Alexandre de Cornière & Greg Taylor, 2014. "Quality Provision in the Presence of a Biased Intermediary," Working Papers 14-06, NET Institute.
    15. Ron Berman & Zsolt Katona, 2013. "The Role of Search Engine Optimization in Search Marketing," Marketing Science, INFORMS, vol. 32(4), pages 644-651, July.
    16. Kinshuk Jerath & Liye Ma & Young-Hoon Park & Kannan Srinivasan, 2011. "A "Position Paradox" in Sponsored Search Auctions," Marketing Science, INFORMS, vol. 30(4), pages 612-627, July.
    17. Tat Y. Chan & Young-Hoon Park, 2015. "Consumer Search Activities and the Value of Ad Positions in Sponsored Search Advertising," Marketing Science, INFORMS, vol. 34(4), pages 606-623, July.
    18. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, November.
    19. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2014. "Examining the Impact of Ranking on Consumer Behavior and Search Engine Revenue," Management Science, INFORMS, vol. 60(7), pages 1632-1654, July.
    20. Weitzman, Martin L, 1979. "Optimal Search for the Best Alternative," Econometrica, Econometric Society, vol. 47(3), pages 641-654, May.
    21. Elisabeth Honka, 2014. "Quantifying search and switching costs in the US auto insurance industry," RAND Journal of Economics, RAND Corporation, vol. 45(4), pages 847-884, December.
    22. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    23. Przemyslaw Jeziorski & Ilya Segal, 2015. "What Makes Them Click: Empirical Analysis of Consumer Demand for Search Advertising," American Economic Journal: Microeconomics, American Economic Association, vol. 7(3), pages 24-53, August.
    24. Athey, Susan & Imbens, Guido W., 2015. "Machine Learning for Estimating Heterogeneous Causal Effects," Research Papers 3350, Stanford University, Graduate School of Business.
    25. Przemys?aw Jeziorski & Sridhar Moorthy, 2018. "Advertiser Prominence Effects in Search Advertising," Management Science, INFORMS, vol. 64(3), pages 1365-1383, March.
    26. Andrei Hagiu & Bruno Jullien, 2011. "Why do intermediaries divert search?," RAND Journal of Economics, RAND Corporation, vol. 42(2), pages 337-362, June.
    27. Song Yao & Carl F. Mela, 2011. "A Dynamic Model of Sponsored Search Advertising," Marketing Science, INFORMS, vol. 30(3), pages 447-468, 05-06.
    28. Liran Einav & Theresa Kuchler & Jonathan Levin & Neel Sundaresan, 2015. "Assessing Sale Strategies in Online Markets Using Matched Listings," American Economic Journal: Microeconomics, American Economic Association, vol. 7(2), pages 215-247, May.
    29. Anindya Ghose & Sha Yang, 2009. "An Empirical Analysis of Search Engine Advertising: Sponsored Search in Electronic Markets," Management Science, INFORMS, vol. 55(10), pages 1605-1622, October.
    30. Sha Yang & Anindya Ghose, 2010. "Analyzing the Relationship Between Organic and Sponsored Search Advertising: Positive, Negative, or Zero Interdependence?," Marketing Science, INFORMS, vol. 29(4), pages 602-623, 07-08.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael P. Greminger, 2022. "Heterogeneous Position Effects and the Power of Rankings," Papers 2210.16408, arXiv.org, revised Dec 2023.
    2. Hana Choi & Carl F. Mela, 2019. "Monetizing Online Marketplaces," Marketing Science, INFORMS, vol. 38(6), pages 948-972, November.
    3. Yuxin Chen & Song Yao, 2017. "Sequential Search with Refinement: Model and Application with Click-Stream Data," Management Science, INFORMS, vol. 63(12), pages 4345-4365, December.
    4. Ashish Agarwal & Tridas Mukhopadhyay, 2016. "The Impact of Competing Ads on Click Performance in Sponsored Search," Information Systems Research, INFORMS, vol. 27(3), pages 538-557.
    5. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2019. "Modeling Consumer Footprints on Search Engines: An Interplay with Social Media," Management Science, INFORMS, vol. 65(3), pages 1363-1385, March.
    6. Dan Yavorsky & Elisabeth Honka & Keith Chen, 2021. "Consumer search in the U.S. auto industry: The role of dealership visits," Quantitative Marketing and Economics (QME), Springer, vol. 19(1), pages 1-52, March.
    7. Raluca M. Ursu & Qingliang Wang & Pradeep K. Chintagunta, 2020. "Search Duration," Marketing Science, INFORMS, vol. 39(5), pages 849-871, September.
    8. Wei Zhou & Zidong Wang, 2020. "Competing for Search Traffic in Query Markets: Entry Strategy, Platform Design, and Entrepreneurship," Working Papers 20-12, NET Institute.
    9. Rafael P. Greminger, 2022. "Optimal Search and Discovery," Management Science, INFORMS, vol. 68(5), pages 3904-3924, May.
    10. Harris, Mark N. & Novarese, Marco & Wilson, Chris M., 2022. "Being in the right place: A natural field experiment on the causes of position effects in individual choice," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 24-40.
    11. Ali Aouad & Danny Segev, 2021. "Display Optimization for Vertically Differentiated Locations Under Multinomial Logit Preferences," Management Science, INFORMS, vol. 67(6), pages 3519-3550, June.
    12. Andrey Simonov & Shawndra Hill, 2021. "Competitive Advertising on Brand Search: Traffic Stealing and Click Quality," Marketing Science, INFORMS, vol. 40(5), pages 923-945, September.
    13. Honka, Elisabeth & Seiler, Stephan & Ursu, Raluca, 2024. "Consumer search: What can we learn from pre-purchase data?," Journal of Retailing, Elsevier, vol. 100(1), pages 114-129.
    14. Jun B. Kim & Paulo Albuquerque & Bart J. Bronnenberg, 2017. "The Probit Choice Model Under Sequential Search with an Application to Online Retailing," Management Science, INFORMS, vol. 63(11), pages 3911-3929, November.
    15. Raluca M. Ursu & Qianyun Zhang & Elisabeth Honka, 2023. "Search Gaps and Consumer Fatigue," Marketing Science, INFORMS, vol. 42(1), pages 110-136, January.
    16. Chalil, Tengku Munawar & Dahana, Wirawan Dony & Baumann, Chris, 2020. "How do search ads induce and accelerate conversion? The moderating role of transaction experience and organizational type," Journal of Business Research, Elsevier, vol. 116(C), pages 324-336.
    17. Gibbard, Peter, 2023. "Search with two stages of information acquisition: A structural econometric model of online purchases," Information Economics and Policy, Elsevier, vol. 65(C).
    18. Bronnenberg, Bart & Dube, Jean-Pierre, 2016. "The Formation of Consumer Brand Preferences," CEPR Discussion Papers 11648, C.E.P.R. Discussion Papers.
    19. Mengzhou Zhuang & Eric (Er) Fang & Jongkuk Lee & Xiaoling Li, 2021. "The Effects of Price Rank on Clicks and Conversions in Product List Advertising on Online Retail Platforms," Information Systems Research, INFORMS, vol. 32(4), pages 1412-1430, December.
    20. Przemys?aw Jeziorski & Sridhar Moorthy, 2018. "Advertiser Prominence Effects in Search Advertising," Management Science, INFORMS, vol. 64(3), pages 1365-1383, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:37:y:2018:i:4:p:530-552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.