Author
Listed:
- Milind Dawande
- Sameer Mehta
- Liying Mu
Abstract
The promise of consumer data along with advances in information technology has spurred innovation not only in the way firms conduct their business operations but also in the manner in which data are collected. A prominent institutional structure that has recently emerged is a data cooperative—an organization that collects data from its members, and processes and monetizes the pooled data. A characteristic of consumer data is the externality it generates: Data shared by an individual reveal information about other similar individuals; thus, the marginal value of pooled data increases in both the quantity and quality of the data. A key challenge faced by a data cooperative is the design of a revenue‐allocation scheme for sharing revenue with its members. An effective scheme generates a beneficial cycle: It incentivizes members to share high‐quality data, which in turn results in high‐quality pooled data—this increases the attractiveness of the data for buyers and hence the cooperative's revenue, ultimately resulting in improved compensation for the members. While the cooperative naturally wishes to maximize its total surplus, two other important desirable properties of an allocation scheme are individual rationality and coalitional stability. We first examine a natural proportional allocation scheme—which pays members based on their individual contribution—and show that it simultaneously achieves individual rationality, the first‐best outcome, and coalitional stability, when members' privacy costs are homogeneous. Under heterogeneity in privacy costs, we analyze a novel hybrid allocation scheme and show that it achieves both individual rationality and the first‐best outcome, but may not satisfy coalitional stability. Finally, our RobinHood allocation scheme—which uses a fraction of the revenue to ensure coalitional stability and allocates the remaining based on the hybrid scheme—achieves all the desirable properties.
Suggested Citation
Milind Dawande & Sameer Mehta & Liying Mu, 2023.
"Robin Hood to the Rescue: Sustainable Revenue‐Allocation Schemes for Data Cooperatives,"
Production and Operations Management, Production and Operations Management Society, vol. 32(8), pages 2560-2577, August.
Handle:
RePEc:bla:popmgt:v:32:y:2023:i:8:p:2560-2577
DOI: 10.1111/poms.13995
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:32:y:2023:i:8:p:2560-2577. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.