IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v64y2018i6p2609-2627.html
   My bibliography  Save this article

Optimal Marketing Strategies for the Acquisition and Retention of Service Subscriber

Author

Listed:
  • Tarek Ben Rhouma

    (GERAD and HEC Montréal, Montréal, Québec H3T 2A7, Canada)

  • Georges Zaccour

    (GERAD and HEC Montréal, Montréal, Québec H3T 2A7, Canada)

Abstract

In this paper, we propose a diffusion model for a subscription service. The evolution over time of the number of subscribers is governed by a differential equation combining two processes—namely, a customer acquisition process and a customer attrition process. Assuming profit-maximization behavior of the firm, we use dynamic programming to optimize the customer equity and determine optimal customer relationship marketing expenditures. We implement an augmented Kalman filter with continuous state and discrete observations to estimate the model’s parameters using market data of two well-known companies in the telecommunications sector. To the best of our knowledge, this is the first paper to model acquisition and retention efforts in the context of a diffusion model. By doing so, we extend the literature on product diffusion to services—that is, beyond its traditional area of durable (and occasionally nondurable) products. By the same token, we contribute to the literature on customer relationship marketing (CRM), where social interactions have been overlooked. Our analytical and numerical results provide a better understanding of the relationships among the optimal customer equity, the customer lifetime value, the prospect lifetime value, and the optimal acquisition and retention spending. Our model and estimation approach give the tools for assessing empirically the role of CRM spending, social interactions, and other factors in the service subscription dynamics. Our main empirical results are as follows: (i) CRM spending and external incentives have indeed a significant effect on acquisition and retention processes; (ii) the impact of CRM is market specific; (iii) compared with optimal levels, both firms underinvest in retention; and (iv) whereas we observe increasing spending in acquisition over time, the derived optimal policy recommends a decreasing level of spending over time.

Suggested Citation

  • Tarek Ben Rhouma & Georges Zaccour, 2018. "Optimal Marketing Strategies for the Acquisition and Retention of Service Subscriber," Management Science, INFORMS, vol. 64(6), pages 2609-2627, June.
  • Handle: RePEc:inm:ormnsc:v:64:y:2018:i:6:p:2609-2627
    DOI: 10.287/mnsc.2017.2752
    as

    Download full text from publisher

    File URL: https://doi.org/10.287/mnsc.2017.2752
    Download Restriction: no

    File URL: https://libkey.io/10.287/mnsc.2017.2752?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Olivier Rubel & Prasad A. Naik & Shuba Srinivasan, 2011. "Optimal Advertising When Envisioning a Product-Harm Crisis," Marketing Science, INFORMS, vol. 30(6), pages 1048-1065, November.
    2. Berger, Paul D. & Bechwati, Nada Nasr, 2001. "The allocation of promotion budget to maximize customer equity," Omega, Elsevier, vol. 29(1), pages 49-61, February.
    3. M. Calciu, 2008. "Numeric decision support to find optimal balance between customer acquisition and retention spending," Post-Print hal-00323717, HAL.
    4. Wagner Kamakura & Carl Mela & Asim Ansari & Anand Bodapati & Pete Fader & Raghuram Iyengar & Prasad Naik & Scott Neslin & Baohong Sun & Peter Verhoef & Michel Wedel & Ron Wilcox, 2005. "Choice Models and Customer Relationship Management," Marketing Letters, Springer, vol. 16(3), pages 279-291, December.
    5. Woisetschläger, David M. & Lentz, Patrick & Evanschitzky, Heiner, 2011. "How habits, social ties, and economic switching barriers affect customer loyalty in contractual service settings," Journal of Business Research, Elsevier, vol. 64(8), pages 800-808, August.
    6. Sunil Gupta & Valarie Zeithaml, 2006. "Customer Metrics and Their Impact on Financial Performance," Marketing Science, INFORMS, vol. 25(6), pages 718-739, 11-12.
    7. Andrés Musalem & Yogesh V. Joshi, 2009. "—How Much Should You Invest in Each Customer Relationship? A Competitive Strategic Approach," Marketing Science, INFORMS, vol. 28(3), pages 555-565, 05-06.
    8. Islam, Towhidul & Fiebig, Denzil G, 2001. "Modelling the Development of Supply-Restricted Telecommunications Markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(4), pages 249-264, July.
    9. Dipak Jain & Vijay Mahajan & Eitan Muller, 1991. "Innovation Diffusion in the Presence of Supply Restrictions," Marketing Science, INFORMS, vol. 10(1), pages 83-90.
    10. Peter J. Danaher, 2002. "Optimal Pricing of New Subscription Services: Analysis of a Market Experiment," Marketing Science, INFORMS, vol. 21(2), pages 119-138, February.
    11. Roland T. Rust & Tuck Siong Chung, 2006. "Marketing Models of Service and Relationships," Marketing Science, INFORMS, vol. 25(6), pages 560-580, 11-12.
    12. Ruth N. Bolton, 1998. "A Dynamic Model of the Duration of the Customer's Relationship with a Continuous Service Provider: The Role of Satisfaction," Marketing Science, INFORMS, vol. 17(1), pages 45-65.
    13. Prins, R. & Verhoef, P.C., 2007. "Marketing Communication Drivers of Adoption Timing of a New E-Service among Existing Customers," ERIM Report Series Research in Management ERS-2007-018-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    14. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    15. Vardit Landsman & Moshe Givon, 2010. "The diffusion of a new service: Combining service consideration and brand choice," Quantitative Marketing and Economics (QME), Springer, vol. 8(1), pages 91-121, March.
    16. Wareham, Jonathan & Levy, Armando & Shi, Wei, 0. "Wireless diffusion and mobile computing: implications for the digital divide," Telecommunications Policy, Elsevier, vol. 28(5-6), pages 439-457, June.
    17. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    18. Prasad A. Naik & Kalyan Raman & Russell S. Winer, 2005. "Planning Marketing-Mix Strategies in the Presence of Interaction Effects," Marketing Science, INFORMS, vol. 24(1), pages 25-34, June.
    19. Sungjoon Nam & Puneet Manchanda & Pradeep K. Chintagunta, 2010. "The Effect of Signal Quality and Contiguous Word of Mouth on Customer Acquisition for a Video-on-Demand Service," Marketing Science, INFORMS, vol. 29(4), pages 690-700, 07-08.
    20. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    21. Dan Horsky & Leonard S. Simon, 1983. "Advertising and the Diffusion of New Products," Marketing Science, INFORMS, vol. 2(1), pages 1-17.
    22. Venky Nagar & Madhav V. Rajan, 2005. "Measuring Customer Relationships: The Case of the Retail Banking Industry," Management Science, INFORMS, vol. 51(6), pages 904-919, June.
    23. Wu, Feng-Shang & Chu, Wen-Lin, 2010. "Diffusion models of mobile telephony," Journal of Business Research, Elsevier, vol. 63(5), pages 497-501, May.
    24. Prasad A. Naik & Ashutosh Prasad & Suresh P. Sethi, 2008. "Building Brand Awareness in Dynamic Oligopoly Markets," Management Science, INFORMS, vol. 54(1), pages 129-138, January.
    25. Botelho, Anabela & Pinto, L.C.Lígia Costa, 0. "The diffusion of cellular phones in Portugal," Telecommunications Policy, Elsevier, vol. 28(5-6), pages 427-437, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Landsman, Vardit & Nitzan, Irit, 2020. "Cross-decision social effects in product adoption and defection decisions," International Journal of Research in Marketing, Elsevier, vol. 37(2), pages 213-235.
    2. Robin Gubela & Artem Bequé & Stefan Lessmann & Fabian Gebert, 2019. "Conversion Uplift in E-Commerce: A Systematic Benchmark of Modeling Strategies," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 747-791, May.
    3. Gubela, Robin & Bequé, Artem & Gebert, Fabian & Lessmann, Stefan, 2018. "Conversion uplift in e-commerce: A systematic benchmark of modeling strategies," IRTG 1792 Discussion Papers 2018-062, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    4. Matsuoka, Kohsuke, 2021. "A framework for variance analysis of customer equity based on a Markov chain model," Journal of Business Research, Elsevier, vol. 129(C), pages 57-69.
    5. Kohsuke Matsuoka, 2020. "Exploring the interface between management accounting and marketing: a literature review of customer accounting," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 31(3), pages 157-208, September.
    6. Chang, Shuhua & Zhang, Zhaowei & Wang, Xinyu & Dong, Yan, 2020. "Optimal acquisition and retention strategies in a duopoly model of competition," European Journal of Operational Research, Elsevier, vol. 282(2), pages 677-695.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Shuhua & Zhang, Zhaowei & Wang, Xinyu & Dong, Yan, 2020. "Optimal acquisition and retention strategies in a duopoly model of competition," European Journal of Operational Research, Elsevier, vol. 282(2), pages 677-695.
    2. Mesak, Hani I. & Bari, Abdullahel & Babin, Barry J. & Birou, Laura M. & Jurkus, Anthony, 2011. "Optimum advertising policy over time for subscriber service innovations in the presence of service cost learning and customers' disadoption," European Journal of Operational Research, Elsevier, vol. 211(3), pages 642-649, June.
    3. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    4. Jha, Ashutosh & Saha, Debashis, 2020. "“Forecasting and analysing the characteristics of 3G and 4G mobile broadband diffusion in India: A comparative evaluation of Bass, Norton-Bass, Gompertz, and logistic growth models”," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    5. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    6. Meade, Nigel & Islam, Towhidul, 2015. "Forecasting in telecommunications and ICT—A review," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1105-1126.
    7. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    8. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
    9. Fruchter, Gila E. & Sigué, Simon P., 2013. "Dynamic pricing for subscription services," Journal of Economic Dynamics and Control, Elsevier, vol. 37(11), pages 2180-2194.
    10. Shi, Xiaohui & Li, Feng & Bigdeli, Ali Ziaee, 2016. "An examination of NPD models in the context of business models," Journal of Business Research, Elsevier, vol. 69(7), pages 2541-2550.
    11. Guidolin, Mariangela & Guseo, Renato, 2015. "Technological change in the U.S. music industry: Within-product, cross-product and churn effects between competing blockbusters," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 35-46.
    12. Lee, Chul-Yong & Huh, Sung-Yoon, 2017. "Forecasting the diffusion of renewable electricity considering the impact of policy and oil prices: The case of South Korea," Applied Energy, Elsevier, vol. 197(C), pages 29-39.
    13. Andrés Musalem & Yogesh V. Joshi, 2009. "—How Much Should You Invest in Each Customer Relationship? A Competitive Strategic Approach," Marketing Science, INFORMS, vol. 28(3), pages 555-565, 05-06.
    14. Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
    15. Ye Li & Clemens Kool & Peter-Jan Engelen, 2020. "Analyzing the Business Case for Hydrogen-Fuel Infrastructure Investments with Endogenous Demand in The Netherlands: A Real Options Approach," Sustainability, MDPI, vol. 12(13), pages 1-22, July.
    16. Baburin, Vyacheslav & Zemtsov, Stepan, 2014. "Diffussion of ICT-products and "five Russias"," MPRA Paper 68926, University Library of Munich, Germany, revised 10 May 2014.
    17. Nejad, Mohammad G. & Amini, Mehdi & Sherrell, Daniel L., 2016. "The profit impact of revenue heterogeneity and assortativity in the presence of negative word-of-mouth," International Journal of Research in Marketing, Elsevier, vol. 33(3), pages 656-673.
    18. Ferreira, Kevin D. & Lee, Chi-Guhn, 2014. "An integrated two-stage diffusion of innovation model with market segmented learning," Technological Forecasting and Social Change, Elsevier, vol. 88(C), pages 189-201.
    19. Landsman, Vardit & Nitzan, Irit, 2020. "Cross-decision social effects in product adoption and defection decisions," International Journal of Research in Marketing, Elsevier, vol. 37(2), pages 213-235.
    20. Scaglione, Miriam & Giovannetti, Emanuele & Hamoudia, Mohsen, 2015. "The diffusion of mobile social networking: Exploring adoption externalities in four G7 countries," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1159-1170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:64:y:2018:i:6:p:2609-2627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.