IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v211y2011i3p642-649.html
   My bibliography  Save this article

Optimum advertising policy over time for subscriber service innovations in the presence of service cost learning and customers' disadoption

Author

Listed:
  • Mesak, Hani I.
  • Bari, Abdullahel
  • Babin, Barry J.
  • Birou, Laura M.
  • Jurkus, Anthony

Abstract

On the theoretical side, this paper characterizes qualitatively optimal advertising policy for new subscriber services. A monopolistic market is analyzed first for which customers' disadoption, discounting of future profits streams and a service cost learning curve are allowed. After characterizing the optimal policy for a general diffusion model, the results pertaining to a specific diffusion model for which advertising affects the coefficient of innovation that incorporates the disadoption rate are reported. The results of the theoretical research show that the advertising policy of the service firm in the presence of customers' disadoption could be very different from the same when disadoption is ignored. On the empirical side, four alternative diffusion models are estimated and their predictive powers using a one-step-ahead forecasting procedure compared. The diffusion data analyzed are related to the Canadian cable TV industry. Empirical research findings suggest that the specific diffusion model considered above is not only of theoretical appeal but also of major empirical relevance. The analytical findings of the study are documented in six theoretical propositions for which proofs are provided in a separate Appendix. The results of a related numerical experiment together with the analytical findings pertaining to the competitive role of advertising are included. Managerial implications of the study together with directions for future research are also discussed.

Suggested Citation

  • Mesak, Hani I. & Bari, Abdullahel & Babin, Barry J. & Birou, Laura M. & Jurkus, Anthony, 2011. "Optimum advertising policy over time for subscriber service innovations in the presence of service cost learning and customers' disadoption," European Journal of Operational Research, Elsevier, vol. 211(3), pages 642-649, June.
  • Handle: RePEc:eee:ejores:v:211:y:2011:i:3:p:642-649
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00874-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parker, Philip M., 1994. "Aggregate diffusion forecasting models in marketing: A critical review," International Journal of Forecasting, Elsevier, vol. 10(2), pages 353-380, September.
    2. Burckhard von Rabenau & Konrad Stahl, 1974. "Dynamic Aspects of Public Goods: A Further Analysis of the Telephone System," Bell Journal of Economics, The RAND Corporation, vol. 5(2), pages 651-669, Autumn.
    3. Seierstad, Atle & Sydsaeter, Knut, 1977. "Sufficient Conditions in Optimal Control Theory," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 367-391, June.
    4. Gatignon, Hubert & Robertson, Thomas S, 1985. "A Propositional Inventory for New Diffusion Research," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 11(4), pages 849-867, March.
    5. Dipak C. Jain & Eitan Muller & Naufel J. Vilcassim, 1999. "Pricing Patterns of Cellular Phones and Phonecalls: A Segment-Level Analysis," Management Science, INFORMS, vol. 45(2), pages 131-141, February.
    6. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    7. Engelbert Dockner & Steffen Jørgensen, 1988. "Optimal Pricing Strategies for New Products in Dynamic Oligopolies," Marketing Science, INFORMS, vol. 7(4), pages 315-334.
    8. Eric D. Darr & Linda Argote & Dennis Epple, 1995. "The Acquisition, Transfer, and Depreciation of Knowledge in Service Organizations: Productivity in Franchises," Management Science, INFORMS, vol. 41(11), pages 1750-1762, November.
    9. Stefan Stremersch & Eitan Muller & Renana Peres, 2010. "Does new product growth accelerate across technology generations?," Marketing Letters, Springer, vol. 21(2), pages 103-120, June.
    10. Gerald L. Thompson & Jinn-Tsair Teng, 1984. "Optimal Pricing and Advertising Policies for New Product Oligopoly Models," Marketing Science, INFORMS, vol. 3(2), pages 148-168.
    11. Dan Horsky & Karl Mate, 1988. "Dynamic Advertising Strategies of Competing Durable Good Producers," Marketing Science, INFORMS, vol. 7(4), pages 356-367.
    12. Anirudh Dhebar & Shmuel S. Oren, 1986. "Dynamic Nonlinear Pricing in Networks with Interdependent Demand," Operations Research, INFORMS, vol. 34(3), pages 384-394, June.
    13. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    14. Dipak Jain & Vijay Mahajan & Eitan Muller, 1991. "Innovation Diffusion in the Presence of Supply Restrictions," Marketing Science, INFORMS, vol. 10(1), pages 83-90.
    15. Engelbert Dockner & Steffen Jørgensen, 1988. "Optimal Advertising Policies for Diffusion Models of New Product Innovation in Monopolistic Situations," Management Science, INFORMS, vol. 34(1), pages 119-130, January.
    16. Dung Nguyen & Lei Shi, 2006. "Competitive Advertising Strategies and Market-Size Dynamics: A Research Note on Theory and Evidence," Management Science, INFORMS, vol. 52(6), pages 965-973, June.
    17. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    18. Dan Horsky & Leonard S. Simon, 1983. "Advertising and the Diffusion of New Products," Marketing Science, INFORMS, vol. 2(1), pages 1-17.
    19. Feichtinger, Gustav, 1982. "Saddle point analysis in a price-advertising model," Journal of Economic Dynamics and Control, Elsevier, vol. 4(1), pages 319-340, November.
    20. Tonya Boone & Ram Ganeshan & Robert L. Hicks, 2008. "Learning and Knowledge Depreciation in Professional Services," Management Science, INFORMS, vol. 54(7), pages 1231-1236, July.
    21. Peter J. Danaher, 2002. "Optimal Pricing of New Subscription Services: Analysis of a Market Experiment," Marketing Science, INFORMS, vol. 21(2), pages 119-138, February.
    22. Eric Maskin & John Riley, 1984. "Monopoly with Incomplete Information," RAND Journal of Economics, The RAND Corporation, vol. 15(2), pages 171-196, Summer.
    23. Kumar, Subodha & Sethi, Suresh P., 2009. "Dynamic pricing and advertising for web content providers," European Journal of Operational Research, Elsevier, vol. 197(3), pages 924-944, September.
    24. Roland T. Rust & Tuck Siong Chung, 2006. "Marketing Models of Service and Relationships," Marketing Science, INFORMS, vol. 25(6), pages 560-580, 11-12.
    25. Shlomo Kalish, 1985. "A New Product Adoption Model with Price, Advertising, and Uncertainty," Management Science, INFORMS, vol. 31(12), pages 1569-1585, December.
    26. Jinn-Tsair Teng & Gerald L. Thompson, 1983. "Oligopoly Models for Optimal Advertising When Production Costs Obey a Learning Curve," Management Science, INFORMS, vol. 29(9), pages 1087-1101, September.
    27. Anirudh Dhebar & Shmuel S. Oren, 1985. "Optimal Dynamic Pricing For Expanding Networks," Marketing Science, INFORMS, vol. 4(4), pages 336-351.
    28. Prins, R. & Verhoef, P.C., 2007. "Marketing Communication Drivers of Adoption Timing of a New E-Service among Existing Customers," ERIM Report Series Research in Management ERS-2007-018-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amini, Mehdi & Wakolbinger, Tina & Racer, Michael & Nejad, Mohammad G., 2012. "Alternative supply chain production–sales policies for new product diffusion: An agent-based modeling and simulation approach," European Journal of Operational Research, Elsevier, vol. 216(2), pages 301-311.
    2. Saurabh Panwar & P. K. Kapur & Ompal Singh, 2020. "Modeling technology diffusion: a study based on market coverage and advertising efforts," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 154-162, July.
    3. Avagyan, Vardan & Esteban-Bravo, Mercedes & Vidal-Sanz, Jose M., 2014. "Licensing radical product innovations to speed up the diffusion," European Journal of Operational Research, Elsevier, vol. 239(2), pages 542-555.
    4. Deepti Aggrawal & Mohini Agarwal & Rubina Mittal & Adarsh Anand, 2022. "Assessing the impact of negative WOM on diffusion process," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 820-827, June.
    5. Alenka Lena Klopcic & Jana Hojnik & Stefan Bojnec & Drago Papler, 2020. "Global Transition to the Subscription Economy: Literature Review on Business Model Changes in the Media Landscape," Managing Global Transitions, University of Primorska, Faculty of Management Koper, vol. 18(4 (Winter), pages 323-348.
    6. Jiwen Ge & Dorothee Honhon & Jan C. Fransoo & Lei Zhao, 2021. "Supplying to Mom and Pop: Traditional Retail Channel Selection in Megacities," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 19-35, 1-2.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tarek Ben Rhouma & Georges Zaccour, 2018. "Optimal Marketing Strategies for the Acquisition and Retention of Service Subscriber," Management Science, INFORMS, vol. 64(6), pages 2609-2627, June.
    2. Teng, Jinn-Tsair & Thompson, Gerald L., 1996. "Optimal strategies for general price-quality decision models of new products with learning production costs," European Journal of Operational Research, Elsevier, vol. 93(3), pages 476-489, September.
    3. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    4. Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
    5. Fruchter, Gila E. & Van den Bulte, Christophe, 2011. "Why the Generalized Bass Model leads to odd optimal advertising policies," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 218-230.
    6. M. Breton & F. Chauny & G. Zaccour, 1997. "Leader–Follower Dynamic Game of New Product Diffusion," Journal of Optimization Theory and Applications, Springer, vol. 92(1), pages 77-98, January.
    7. Avagyan, Vardan & Esteban-Bravo, Mercedes & Vidal-Sanz, Jose M., 2014. "Licensing radical product innovations to speed up the diffusion," European Journal of Operational Research, Elsevier, vol. 239(2), pages 542-555.
    8. E. J. Dockner & G. E. Fruchter, 2004. "Dynamic Strategic Pricing and Speed of Diffusion," Journal of Optimization Theory and Applications, Springer, vol. 123(2), pages 331-348, November.
    9. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    10. Trichy V. Krishnan & Dipak C. Jain, 2006. "Optimal Dynamic Advertising Policy for New Products," Management Science, INFORMS, vol. 52(12), pages 1957-1969, December.
    11. Alexei Parakhonyak & Nick Vikander, 2019. "Optimal Sales Schemes for Network Goods," Management Science, INFORMS, vol. 65(2), pages 819-841, February.
    12. Chang, Shuhua & Zhang, Zhaowei & Wang, Xinyu & Dong, Yan, 2020. "Optimal acquisition and retention strategies in a duopoly model of competition," European Journal of Operational Research, Elsevier, vol. 282(2), pages 677-695.
    13. John Hauser & Gerard J. Tellis & Abbie Griffin, 2006. "Research on Innovation: A Review and Agenda for," Marketing Science, INFORMS, vol. 25(6), pages 687-717, 11-12.
    14. Jun, Duk B. & Kim, Seon K. & Park, Yoon S. & Park, Myoung H. & Wilson, Amy R., 2002. "Forecasting telecommunication service subscribers in substitutive and competitive environments," International Journal of Forecasting, Elsevier, vol. 18(4), pages 561-581.
    15. Arda Yenipazarli, 2015. "A road map to new product success: warranty, advertisement and price," Annals of Operations Research, Springer, vol. 226(1), pages 669-694, March.
    16. Martin Hewing, 2012. "A Theoretical and Empirical Comparison of Innovation Diffusion Models Applying Data from the Software Industry," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 3(2), pages 125-141, June.
    17. Huang, Jian & Leng, Mingming & Liang, Liping, 2012. "Recent developments in dynamic advertising research," European Journal of Operational Research, Elsevier, vol. 220(3), pages 591-609.
    18. Wenjing Shen & Izak Duenyas & Roman Kapuscinski, 2014. "Optimal Pricing, Production, and Inventory for New Product Diffusion Under Supply Constraints," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 28-45, February.
    19. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    20. Swami, Sanjeev & Dutta, Arindam, 2010. "Advertising strategies for new product diffusion in emerging markets: Propositions and analysis," European Journal of Operational Research, Elsevier, vol. 204(3), pages 648-661, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:211:y:2011:i:3:p:642-649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.