IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v37y2013i11p2180-2194.html
   My bibliography  Save this article

Dynamic pricing for subscription services

Author

Listed:
  • Fruchter, Gila E.
  • Sigué, Simon P.

Abstract

This paper investigates the use of pricing schemes in subscription services that consist of various combinations of activation, subscription, and cancellation fees. When customers exclusively consider what is directly perceivable, the activation fee starts low and increases as the network grows (penetration strategy), whereas the cancellation fee starts high and decreases as the network grows (skimming strategy). The activation and cancellation fees take various other forms otherwise. The subscription fee remains low at the early stages and increases only when a reasonable number of subscribers is secured. Finally, the authors discuss the theoretical and managerial implications of their findings.

Suggested Citation

  • Fruchter, Gila E. & Sigué, Simon P., 2013. "Dynamic pricing for subscription services," Journal of Economic Dynamics and Control, Elsevier, vol. 37(11), pages 2180-2194.
  • Handle: RePEc:eee:dyncon:v:37:y:2013:i:11:p:2180-2194
    DOI: 10.1016/j.jedc.2013.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188913000961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2013.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    2. Rao, Vithala R, 1984. "Pricing Research in Marketing: The State of the Art," The Journal of Business, University of Chicago Press, vol. 57(1), pages 39-60, January.
    3. Shlomo Kalish, 1983. "Monopolist Pricing with Dynamic Demand and Production Cost," Marketing Science, INFORMS, vol. 2(2), pages 135-159.
    4. Hartl, Richard F., 1987. "A simple proof of the monotonicity of the state trajectories in autonomous control problems," Journal of Economic Theory, Elsevier, vol. 41(1), pages 211-215, February.
    5. Andrés Musalem & Yogesh V. Joshi, 2009. "—How Much Should You Invest in Each Customer Relationship? A Competitive Strategic Approach," Marketing Science, INFORMS, vol. 28(3), pages 555-565, 05-06.
    6. Ching-I Huang, 2008. "Estimating demand for cellular phone service under nonlinear pricing," Quantitative Marketing and Economics (QME), Springer, vol. 6(4), pages 371-413, December.
    7. Peter J. Danaher, 2002. "Optimal Pricing of New Subscription Services: Analysis of a Market Experiment," Marketing Science, INFORMS, vol. 21(2), pages 119-138, February.
    8. Bass, Frank M, 1980. "The Relationship between Diffusion Rates, Experience Curves, and Demand Elasticities for Consumer Durable Technological Innovations," The Journal of Business, University of Chicago Press, vol. 53(3), pages 51-67, July.
    9. G. E. Fruchter & R. C. Rao & M. Shi, 2006. "Dynamic Network-Based Discriminatory Pricing," Journal of Optimization Theory and Applications, Springer, vol. 128(3), pages 581-604, March.
    10. Michael Lewis, 2005. "Research Note: A Dynamic Programming Approach to Customer Relationship Pricing," Management Science, INFORMS, vol. 51(6), pages 986-994, June.
    11. Ruth N. Bolton, 1998. "A Dynamic Model of the Duration of the Customer's Relationship with a Continuous Service Provider: The Role of Satisfaction," Marketing Science, INFORMS, vol. 17(1), pages 45-65.
    12. Anirudh Dhebar & Shmuel S. Oren, 1985. "Optimal Dynamic Pricing For Expanding Networks," Marketing Science, INFORMS, vol. 4(4), pages 336-351.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthias Göcke & Svetlana Fedoseeva, 2016. "Optimal Monopolist Export Pricing with Dynamic Demand and Learning Curve Effects," Open Economies Review, Springer, vol. 27(3), pages 447-469, July.
    2. Mohit Tyagi & Nomesh B. Bolia, 2024. "Optimal pricing of subscription services in the restaurant industry," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 23(3), pages 262-273, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tarek Ben Rhouma & Georges Zaccour, 2018. "Optimal Marketing Strategies for the Acquisition and Retention of Service Subscriber," Management Science, INFORMS, vol. 64(6), pages 2609-2627, June.
    2. Wedad Elmaghraby & P{i}nar Keskinocak, 2003. "Dynamic Pricing in the Presence of Inventory Considerations: Research Overview, Current Practices, and Future Directions," Management Science, INFORMS, vol. 49(10), pages 1287-1309, October.
    3. Philipp Afèche & Mojtaba Araghi & Opher Baron, 2017. "Customer Acquisition, Retention, and Service Access Quality: Optimal Advertising, Capacity Level, and Capacity Allocation," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 674-691, October.
    4. Trichy V. Krishnan & Frank M. Bass & Dipak C. Jain, 1999. "Optimal Pricing Strategy for New Products," Management Science, INFORMS, vol. 45(12), pages 1650-1663, December.
    5. Roland T. Rust & Tuck Siong Chung, 2006. "Marketing Models of Service and Relationships," Marketing Science, INFORMS, vol. 25(6), pages 560-580, 11-12.
    6. Chaab, Jafar & Zaccour, Georges, 2024. "Dynamic pricing in the presence of social externalities and reference-price effect," Omega, Elsevier, vol. 122(C).
    7. Roland T. Rust & Ming-Hui Huang, 2014. "The Service Revolution and the Transformation of Marketing Science," Marketing Science, INFORMS, vol. 33(2), pages 206-221, March.
    8. Venkatesan, Rajkumar & Kumar, V., 2002. "A genetic algorithms approach to growth phase forecasting of wireless subscribers," International Journal of Forecasting, Elsevier, vol. 18(4), pages 625-646.
    9. Hongmin Li, 2020. "Optimal Pricing Under Diffusion-Choice Models," Operations Research, INFORMS, vol. 68(1), pages 115-133, January.
    10. Mesak, Hani I. & Bari, Abdullahel & Babin, Barry J. & Birou, Laura M. & Jurkus, Anthony, 2011. "Optimum advertising policy over time for subscriber service innovations in the presence of service cost learning and customers' disadoption," European Journal of Operational Research, Elsevier, vol. 211(3), pages 642-649, June.
    11. Fouad El Ouardighi & Gustav Feichtinger & Gila E. Fruchter, 2018. "Accelerating the diffusion of innovations under mixed word of mouth through marketing–operations interaction," Annals of Operations Research, Springer, vol. 264(1), pages 435-458, May.
    12. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    13. E. J. Dockner & G. E. Fruchter, 2004. "Dynamic Strategic Pricing and Speed of Diffusion," Journal of Optimization Theory and Applications, Springer, vol. 123(2), pages 331-348, November.
    14. Pangburn, Michael S. & Sundaresan, Shankar, 2009. "Capacity decisions for high-tech products with obsolescence," European Journal of Operational Research, Elsevier, vol. 197(1), pages 102-111, August.
    15. Yifan Dou & Marius F. Niculescu & D. J. Wu, 2013. "Engineering Optimal Network Effects via Social Media Features and Seeding in Markets for Digital Goods and Services," Information Systems Research, INFORMS, vol. 24(1), pages 164-185, March.
    16. Gabriel Bitran & René Caldentey, 2003. "An Overview of Pricing Models for Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 5(3), pages 203-229, August.
    17. Oscar Gutiérrez & Francisco Ruiz-Aliseda, 2011. "Real options with unknown-date events," Annals of Finance, Springer, vol. 7(2), pages 171-198, May.
    18. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2017. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Working Papers hal-01592958, HAL.
    19. Zhang, Xiaoqun, 2013. "Income disparity and digital divide: The Internet Consumption Model and cross-country empirical research," Telecommunications Policy, Elsevier, vol. 37(6), pages 515-529.
    20. Kim, Namwoon & Srivastava, Rajendra K., 2007. "Modeling cross-price effects on inter-category dynamics: The case of three computing platforms," Omega, Elsevier, vol. 35(3), pages 290-301, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:37:y:2013:i:11:p:2180-2194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.