IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v61y2015i2p454-473.html
   My bibliography  Save this article

Latent Homophily or Social Influence? An Empirical Analysis of Purchase Within a Social Network

Author

Listed:
  • Liye Ma

    (Robert H. Smith School of Business, University of Maryland, College Park, Maryland 20742)

  • Ramayya Krishnan

    (H. J. Heinz III College, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213)

  • Alan L. Montgomery

    (Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213)

Abstract

Consumers who are close to one another in a social network often make similar purchase decisions. This similarity can result from latent homophily or social influence, as well as common exogenous factors. Latent homophily means consumers who are connected to one another are likely to have similar characteristics and product preferences. Social influence refers to the ability of one consumer to directly influence another consumer's decision based upon their communication. We present an empirical study of purchases of caller ring-back tones using data from an Asian mobile network that predicts consumers' purchase timing and choice decisions. We simultaneously measure latent homophily and social influence, while also accounting for exogenous factors. Identification is achieved due to our dynamic, panel data structure and the availability of detailed communication data. We find strong influence effects and latent homophily effects in both the purchase timing and product choice decisions of consumers. This paper was accepted by Sandra Slaughter, information systems.

Suggested Citation

  • Liye Ma & Ramayya Krishnan & Alan L. Montgomery, 2015. "Latent Homophily or Social Influence? An Empirical Analysis of Purchase Within a Social Network," Management Science, INFORMS, vol. 61(2), pages 454-473, February.
  • Handle: RePEc:inm:ormnsc:v:61:y:2015:i:2:p:454-473
    DOI: 10.1287/mnsc.2014.1928
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2014.1928
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2014.1928?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Raghuram Iyengar & Christophe Van den Bulte & Thomas W. Valente, 2011. "Opinion Leadership and Social Contagion in New Product Diffusion," Marketing Science, INFORMS, vol. 30(2), pages 195-212, 03-04.
    2. Bernheim, B Douglas, 1994. "A Theory of Conformity," Journal of Political Economy, University of Chicago Press, vol. 102(5), pages 841-877, October.
    3. Michael Braun & André Bonfrer, 2011. "Scalable Inference of Customer Similarities from Interactions Data Using Dirichlet Processes," Marketing Science, INFORMS, vol. 30(3), pages 513-531, 05-06.
    4. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    5. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 531-542.
    6. David Bell & Sangyoung Song, 2007. "Neighborhood effects and trial on the internet: Evidence from online grocery retailing," Quantitative Marketing and Economics (QME), Springer, vol. 5(4), pages 361-400, December.
    7. Peter Ebbes & Michel Wedel & Ulf Böckenholt & Ton Steerneman, 2005. "Solving and Testing for Regressor-Error (in)Dependence When no Instrumental Variables are Available: With New Evidence for the Effect of Education on Income," Quantitative Marketing and Economics (QME), Springer, vol. 3(4), pages 365-392, December.
    8. Pradeep K. Chintagunta, 1993. "Investigating Purchase Incidence, Brand Choice and Purchase Quantity Decisions of Households," Marketing Science, INFORMS, vol. 12(2), pages 184-208.
    9. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    10. Christophe Van den Bulte & Yogesh V. Joshi, 2007. "New Product Diffusion with Influentials and Imitators," Marketing Science, INFORMS, vol. 26(3), pages 400-421, 05-06.
    11. Christophe Van den Bulte & Stefan Stremersch, 2004. "Social Contagion and Income Heterogeneity in New Product Diffusion: A Meta-Analytic Test," Marketing Science, INFORMS, vol. 23(4), pages 530-544, July.
    12. Matthew O. Jackson, 2003. "A Survey of Models of Network Formation: Stability and Efficiency," Game Theory and Information 0303011, University Library of Munich, Germany.
    13. Cosma Rohilla Shalizi & Andrew C. Thomas, 2011. "Homophily and Contagion Are Generically Confounded in Observational Social Network Studies," Sociological Methods & Research, , vol. 40(2), pages 211-239, May.
    14. Füsun Gönül & Kannan Srinivasan, 1993. "Modeling Multiple Sources of Heterogeneity in Multinomial Logit Models: Methodological and Managerial Issues," Marketing Science, INFORMS, vol. 12(3), pages 213-229.
    15. Wesley Hartmann & Puneet Manchanda & Harikesh Nair & Matthew Bothner & Peter Dodds & David Godes & Kartik Hosanagar & Catherine Tucker, 2008. "Modeling social interactions: Identification, empirical methods and policy implications," Marketing Letters, Springer, vol. 19(3), pages 287-304, December.
    16. Jackson, Matthew O. & Watts, Alison, 2002. "The Evolution of Social and Economic Networks," Journal of Economic Theory, Elsevier, vol. 106(2), pages 265-295, October.
    17. Wesley R. Hartmann, 2010. "Demand Estimation with Social Interactions and the Implications for Targeted Marketing," Marketing Science, INFORMS, vol. 29(4), pages 585-601, 07-08.
    18. Duncan J. Watts & Peter Sheridan Dodds, 2007. "Influentials, Networks, and Public Opinion Formation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(4), pages 441-458, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Feng & Du, Timon Chih-ting & Wei, Ying, 2019. "Offensive pricing strategies for online platforms," International Journal of Production Economics, Elsevier, vol. 216(C), pages 287-304.
    2. Rhys Murrian & Paul A. Raschky & Klaus Ackermann, 2024. "Friends, Key Players and the Adoption and Use of Experience Goods," Monash Economics Working Papers 2024-17, Monash University, Department of Economics.
    3. Agnieszka Rusinowska & Vassili Vergopoulos, 2020. "Ingratiation and Favoritism in Organizations," Journal of Institutional and Theoretical Economics (JITE), Mohr Siebeck, Tübingen, vol. 176(3), pages 413-445.
    4. Lianren Wu & Jinjie Li & Jiayin Qi & Deli Kong & Xu Li, 2021. "The Role of Opinion Leaders in the Sustainable Development of Corporate-Led Consumer Advice Networks: Evidence from a Chinese Travel Content Community," Sustainability, MDPI, vol. 13(19), pages 1-20, October.
    5. Lukas Maier & Christian V. Baccarella & Jörn H. Block & Timm F. Wagner & Kai-Ingo Voigt, 2023. "The Legitimization Effect of Crowdfunding Success: A Consumer Perspective," Entrepreneurship Theory and Practice, , vol. 47(4), pages 1389-1420, July.
    6. Peter Wittek & Sándor Darányi & Gustaf Nelhans, 2017. "Ruling out static latent homophily in citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 765-777, February.
    7. Qiang Zhang & Ji Wu & J. Leon ZHAO & Liang Liang, 2024. "The antecedents and consequences of social interactions in firm-sponsored community: a social network perspective," Electronic Commerce Research, Springer, vol. 24(3), pages 1967-1995, September.
    8. Park, Minjung, 2019. "Selection bias in estimation of peer effects in product adoption," Journal of choice modelling, Elsevier, vol. 30(C), pages 17-27.
    9. Zaiyan Wei & Mo Xiao & Rong Rong, 2021. "Network Size and Content Generation on Social Media Platforms," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1406-1426, May.
    10. Michael R. Ward, 2022. "Network engagement from learning friends’ preferences: evidence from a video gaming social network," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(3), pages 1239-1255, September.
    11. Bin Zhang & Paul A. Pavlou & Ramayya Krishnan, 2018. "On Direct vs. Indirect Peer Influence in Large Social Networks," Information Systems Research, INFORMS, vol. 29(2), pages 292-314, June.
    12. Xi Chen & Yan Liu & Cheng Zhang, 2022. "Distinguishing Homophily from Peer Influence Through Network Representation Learning," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1958-1969, July.
    13. Tuk, Mirjam A. & Verlegh, Peeter W.J. & Smidts, Ale & Wigboldus, Daniël H.J., 2019. "You and I have nothing in common: The role of dissimilarity in interpersonal influence," Organizational Behavior and Human Decision Processes, Elsevier, vol. 151(C), pages 49-60.
    14. Belo, Rodrigo & Ferreira, Pedro, 2021. "Free Riding in Products with Positive Network Externalities: Empirical Evidence from a Large Mobile Network," SocArXiv wz4k9, Center for Open Science.
    15. Chen, Zhen-Yu & Fan, Zhi-Ping & Sun, Minghe, 2019. "Individual-level social influence identification in social media: A learning-simulation coordinated method," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1005-1015.
    16. Tingting Song & Qian Tang & Jinghua Huang, 2019. "Triadic Closure, Homophily, and Reciprocation: An Empirical Investigation of Social Ties Between Content Providers," Information Systems Research, INFORMS, vol. 30(3), pages 912-926, September.
    17. Tianshu Sun & Siva Viswanathan & Elena Zheleva, 2021. "Creating Social Contagion Through Firm-Mediated Message Design: Evidence from a Randomized Field Experiment," Management Science, INFORMS, vol. 67(2), pages 808-827, February.
    18. Feifei He & Chunhua Sun & Yezheng Liu, 2023. "What social characteristics enhance recommender systems? The effects of network embeddedness and preference heterogeneity," Electronic Commerce Research, Springer, vol. 23(3), pages 1807-1827, September.
    19. Yan Leng & Xiaowen Dong & Esteban Moro & Alex Pentland, 2024. "Long-Range Social Influence in Phone Communication Networks on Offline Adoption Decisions," Information Systems Research, INFORMS, vol. 35(1), pages 318-338, March.
    20. Lee, Yan-Li & Zhou, Tao & Yang, Kexin & Du, Yajun & Pan, Liming, 2023. "Personalized recommender systems based on social relationships and historical behaviors," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    21. Shuiping Ding & Jie Lin & Zhenyu Zhang, 2020. "Influences of Reference Group on Users’ Purchase Intentions in Network Communities: From the Perspective of Trial Purchase and Upgrade Purchase," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    22. Thapa, Sajani & Guzmán, Francisco & Paswan, Audhesh, 2024. "We are just 10 feet away! How does location-based advertising affect consumer-brand engagement?," Journal of Business Research, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Wang & Anocha Aribarg & Yves F. Atchadé, 2013. "Modeling Choice Interdependence in a Social Network," Marketing Science, INFORMS, vol. 32(6), pages 977-997, November.
    2. Grant Miller & A. Mushfiq Mobarak, 2015. "Learning About New Technologies Through Social Networks: Experimental Evidence on Nontraditional Stoves in Bangladesh," Marketing Science, INFORMS, vol. 34(4), pages 480-499, July.
    3. Florian Probst & Laura Grosswiele & Regina Pfleger, 2013. "Who will lead and who will follow: Identifying Influential Users in Online Social Networks," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 5(3), pages 179-193, June.
    4. Park, Minjung, 2019. "Selection bias in estimation of peer effects in product adoption," Journal of choice modelling, Elsevier, vol. 30(C), pages 17-27.
    5. Bryan Bollinger & Kenneth Gillingham, 2012. "Peer Effects in the Diffusion of Solar Photovoltaic Panels," Marketing Science, INFORMS, vol. 31(6), pages 900-912, November.
    6. Nejad, Mohammad G. & Amini, Mehdi & Babakus, Emin, 2015. "Success Factors in Product Seeding: The Role of Homophily," Journal of Retailing, Elsevier, vol. 91(1), pages 68-88.
    7. Anjana Susarla & Jeong-Ha Oh & Yong Tan, 2012. "Social Networks and the Diffusion of User-Generated Content: Evidence from YouTube," Information Systems Research, INFORMS, vol. 23(1), pages 23-41, March.
    8. Xiao Fang & Paul Jen-Hwa Hu & Zhepeng (Lionel) Li & Weiyu Tsai, 2013. "Predicting Adoption Probabilities in Social Networks," Information Systems Research, INFORMS, vol. 24(1), pages 128-145, March.
    9. Landsman, Vardit & Nitzan, Irit, 2020. "Cross-decision social effects in product adoption and defection decisions," International Journal of Research in Marketing, Elsevier, vol. 37(2), pages 213-235.
    10. Pradeep K. Chintagunta & Harikesh S. Nair, 2011. "Structural Workshop Paper --Discrete-Choice Models of Consumer Demand in Marketing," Marketing Science, INFORMS, vol. 30(6), pages 977-996, November.
    11. Bryan Bollinger & Kenneth Gillingham & A. Justin Kirkpatrick & Steven Sexton, 2022. "Visibility and Peer Influence in Durable Good Adoption," Marketing Science, INFORMS, vol. 41(3), pages 453-476, May.
    12. Zhang, Yuchi & Moe, Wendy W. & Schweidel, David A., 2017. "Modeling the role of message content and influencers in social media rebroadcasting," International Journal of Research in Marketing, Elsevier, vol. 34(1), pages 100-119.
    13. Yaniv Dover & Jacob Goldenberg & Daniel Shapira, 2012. "Network Traces on Penetration: Uncovering Degree Distribution from Adoption Data," Marketing Science, INFORMS, vol. 31(4), pages 689-712, July.
    14. Yansong Hu & Christophe Van den Bulte, 2014. "Nonmonotonic Status Effects in New Product Adoption," Marketing Science, INFORMS, vol. 33(4), pages 509-533, July.
    15. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    16. Vishal Narayan & Vithala R. Rao & Carolyne Saunders, 2011. "How Peer Influence Affects Attribute Preferences: A Bayesian Updating Mechanism," Marketing Science, INFORMS, vol. 30(2), pages 368-384, 03-04.
    17. Qingliang Wang & Fred Miao & Giri Kumar Tayi & En Xie, 2019. "What makes online content viral? The contingent effects of hub users versus non–hub users on social media platforms," Journal of the Academy of Marketing Science, Springer, vol. 47(6), pages 1005-1026, November.
    18. Hema Yoganarasimhan, 2012. "Impact of social network structure on content propagation: A study using YouTube data," Quantitative Marketing and Economics (QME), Springer, vol. 10(1), pages 111-150, March.
    19. Pinar Yildirim & Yanhao Wei & Christophe Bulte & Joy Lu, 2020. "Social network design for inducing effort," Quantitative Marketing and Economics (QME), Springer, vol. 18(4), pages 381-417, December.
    20. Neilson, William & Wichmann, Bruno, 2014. "Social networks and non-market valuations," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 155-170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:61:y:2015:i:2:p:454-473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.