IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v44y1998i3p416-430.html
   My bibliography  Save this article

Using Feature Construction to Improve the Performance of Neural Networks

Author

Listed:
  • Selwyn Piramuthu

    (Decision and Information Sciences, University of Florida, Gainesville, Florida 32611-7169)

  • Harish Ragavan

    (Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801)

  • Michael J. Shaw

    (Department of Business Administration, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820)

Abstract

Recent years have seen the growth in popularity of neural networks for business decision support because of their capabilities for modeling, estimating, and classifying. Compared to other AI methods for problem solving such as expert systems, neural network approaches are especially useful for their ability to learn adaptively from observations. However, neural network learning performed by algorithms such as back-propagation (BP) are known to be slow due to the size of the search space involved and also the iterative manner in which the algorithm works. In this paper, we show that the degree of difficulty in neural network learning is inherent in the given set of training examples. We propose a technique for measuring such learning difficulty, and then develop a feature construction methodology that helps transform the training data so that both the learning speed and classification accuracy of neural network algorithms are improved. We show the efficacy of the proposed method for financial risk classification, a domain characterized by frequent data noise, lack of functional structure, and high attribute interactions. Moreover, the empirical studies also provide insights into the structural characteristics of neural networks with respect to the input data used as well as possible mechanisms to improve the learning performance.

Suggested Citation

  • Selwyn Piramuthu & Harish Ragavan & Michael J. Shaw, 1998. "Using Feature Construction to Improve the Performance of Neural Networks," Management Science, INFORMS, vol. 44(3), pages 416-430, March.
  • Handle: RePEc:inm:ormnsc:v:44:y:1998:i:3:p:416-430
    DOI: 10.1287/mnsc.44.3.416
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.44.3.416
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.44.3.416?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, vol. 38(7), pages 926-947, July.
    2. Ang, James S & Patel, Kiritkumar A, 1975. "Bond Rating Methods: Comparison and Validation," Journal of Finance, American Finance Association, vol. 30(2), pages 631-640, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2020. "Machine learning with parallel neural networks for analyzing and forecasting electricity demand," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 569-597, August.
    2. Tomasz Korol, 2018. "The Implementation of Fuzzy Logic in Forecasting Financial Ratios," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 12(2), June.
    3. P. Du Jardin & E. Séverin, 2011. "Predicting Corporate Bankruptcy Using Self-Organising map: An empirical study to Improve the Forecasting horizon of financial failure model," Post-Print hal-00801878, HAL.
    4. Virág, Miklós & Kristóf, Tamás, 2005. "Az első hazai csődmodell újraszámítása neurális hálók segítségével [Recalculation of the first Hungarian bankruptcy-prediction model using neural networks]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(2), pages 144-162.
    5. Tomasz Korol, 2020. "Assessment of Trajectories of Non-bankrupt and Bankrupt Enterprises," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 1113-1135.
    6. Gestel, Tony Van & Baesens, Bart & Suykens, Johan A.K. & Van den Poel, Dirk & Baestaens, Dirk-Emma & Willekens, Marleen, 2006. "Bayesian kernel based classification for financial distress detection," European Journal of Operational Research, Elsevier, vol. 172(3), pages 979-1003, August.
    7. Kyoung‐Jae Kim, 2004. "Artificial neural networks with feature transformation based on domain knowledge for the prediction of stock index futures," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 12(3), pages 167-176, July.
    8. Santosh Kumar Shrivastav & P. Janaki Ramudu, 2020. "Bankruptcy Prediction and Stress Quantification Using Support Vector Machine: Evidence from Indian Banks," Risks, MDPI, vol. 8(2), pages 1-22, May.
    9. TOBBACK, Ellen & MOEYERSOMS, Julie & STANKOVA, Marija & MARTENS, David, 2016. "Bankruptcy prediction for SMEs using relational data," Working Papers 2016004, University of Antwerp, Faculty of Business and Economics.
    10. R Setiono & S-L Pan & M-H Hsieh & A Azcarraga, 2006. "Knowledge acquisition and revision using neural networks: an application to a cross-national study of brand image perception," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(3), pages 231-240, March.
    11. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    12. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    13. Pendharkar, Parag C., 2002. "A computational study on the performance of artificial neural networks under changing structural design and data distribution," European Journal of Operational Research, Elsevier, vol. 138(1), pages 155-177, April.
    14. Rajiv D. Banker & Robert J. Kauffman, 2004. "50th Anniversary Article: The Evolution of Research on Information Systems: A Fiftieth-Year Survey of the Literature in Management Science," Management Science, INFORMS, vol. 50(3), pages 281-298, March.
    15. Pendharkar, Parag C., 2001. "An empirical study of design and testing of hybrid evolutionary-neural approach for classification," Omega, Elsevier, vol. 29(4), pages 361-374, August.
    16. du Jardin, Philippe, 2010. "Predicting bankruptcy using neural networks and other classification methods: the influence of variable selection techniques on model accuracy," MPRA Paper 44375, University Library of Munich, Germany.
    17. J V Hansen & R D Nelson, 2003. "Forecasting and recombining time-series components by using neural networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(3), pages 307-317, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Palocsay, Susan W. & Stevens, Scott P. & Brookshire, Robert G. & Sacco, William J. & Copes, Wayne S. & Buckman, Robert F. & Smith, J. Stanley, 1996. "Using neural networks for trauma outcome evaluation," European Journal of Operational Research, Elsevier, vol. 93(2), pages 369-386, September.
    2. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    3. Yu-Shan Chen & Ke-Chiun Chang, 2009. "Using neural network to analyze the influence of the patent performance upon the market value of the US pharmaceutical companies," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(3), pages 637-655, September.
    4. Beynon, Malcolm J. & Peel, Michael J., 2001. "Variable precision rough set theory and data discretisation: an application to corporate failure prediction," Omega, Elsevier, vol. 29(6), pages 561-576, December.
    5. Haider A. Khan, 2004. "General Conclusions: From Crisis to a Global Political Economy of Freedom," Palgrave Macmillan Books, in: Global Markets and Financial Crises in Asia, chapter 9, pages 193-211, Palgrave Macmillan.
    6. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    7. Kattan, MW & Cooper, RB, 1998. "The predictive accuracy of computer-based classification decision techniques.A review and research directions," Omega, Elsevier, vol. 26(4), pages 467-482, August.
    8. Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
    9. Lin, Fengyi & Yeh, Ching Chiang & Lee, Meng Yuan, 2013. "A Hybrid Business Failure Prediction Model Using Locally Linear Embedding And Support Vector Machines," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 82-97, March.
    10. Shuofen Hsu & Chaohsin Lin & Yaling Yang, 2008. "Integrating Neural Networks for Risk‐Adjustment Models," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(3), pages 617-642, September.
    11. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
    12. Sridhar Ramamoorti & Andrew D. Bailey Jr & Richard O. Traver, 1999. "Risk assessment in internal auditing: a neural network approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 8(3), pages 159-180, September.
    13. J.E. Boritz & D.B. Kennedy & Augusto de Miranda e Albuquerque, 1995. "Predicting Corporate Failure Using a Neural Network Approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 4(2), pages 95-111, June.
    14. Beynon, Malcolm J., 2005. "A novel technique of object ranking and classification under ignorance: An application to the corporate failure risk problem," European Journal of Operational Research, Elsevier, vol. 167(2), pages 493-517, December.
    15. du Jardin, Philippe & Séverin, Eric, 2011. "Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model," MPRA Paper 44262, University Library of Munich, Germany.
    16. repec:hum:wpaper:sfb649dp2013-037 is not listed on IDEAS
    17. Sanjeev Prashar & Harvinder Singh & Chandan Parsad & T. Sai Vijay, 2017. "Predicting Indian Shoppers’ Malls Loyalty Behaviour," Vikalpa: The Journal for Decision Makers, , vol. 42(4), pages 234-250, December.
    18. Mark T. Leung & An-Sing Chen, 2005. "Performance evaluation of neural network architectures: the case of predicting foreign exchange correlations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 403-420.
    19. Philippe Paquet, 1997. "L'utilisation des réseaux de neurones artificiels en finance," Working Papers 1997-1, Laboratoire Orléanais de Gestion - université d'Orléans.
    20. Chiang, W. -C. & Urban, T. L. & Baldridge, G. W., 1996. "A neural network approach to mutual fund net asset value forecasting," Omega, Elsevier, vol. 24(2), pages 205-215, April.
    21. Sueyoshi, Toshiyuki, 2006. "DEA-Discriminant Analysis: Methodological comparison among eight discriminant analysis approaches," European Journal of Operational Research, Elsevier, vol. 169(1), pages 247-272, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:44:y:1998:i:3:p:416-430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.