IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v29y2001i4p361-374.html
   My bibliography  Save this article

An empirical study of design and testing of hybrid evolutionary-neural approach for classification

Author

Listed:
  • Pendharkar, Parag C.

Abstract

We propose a hybrid evolutionary-neural approach for binary classification that incorporates a special training data over-fitting minimizing selection procedure for improving the prediction accuracy on holdout sample. Our approach integrates parallel global search capability of genetic algorithms (GAs) and local gradient-descent search of the back-propagation algorithm. Using a set of simulated and real life data sets, we illustrate that the proposed hybrid approach fares well, both in training and holdout samples, when compared to the traditional back-propagation artificial neural network (ANN) and a genetic algorithm-based artificial neural network (GA-ANN).

Suggested Citation

  • Pendharkar, Parag C., 2001. "An empirical study of design and testing of hybrid evolutionary-neural approach for classification," Omega, Elsevier, vol. 29(4), pages 361-374, August.
  • Handle: RePEc:eee:jomega:v:29:y:2001:i:4:p:361-374
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(01)00031-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parag Pendharkar & James Rodger, 2000. "Nonlinear programming and genetic search application for production scheduling in coal mines," Annals of Operations Research, Springer, vol. 95(1), pages 251-267, January.
    2. Gary J. Koehler, 1991. "Linear Discriminant Functions Determined by Genetic Search," INFORMS Journal on Computing, INFORMS, vol. 3(4), pages 345-357, November.
    3. Hung, Ming S. & Denton, James W., 1993. "Training neural networks with the GRG2 nonlinear optimizer," European Journal of Operational Research, Elsevier, vol. 69(1), pages 83-91, August.
    4. Yanev, N. & Balev, S., 1999. "A combinatorial approach to the classification problem," European Journal of Operational Research, Elsevier, vol. 115(2), pages 339-350, June.
    5. Sexton, Randall S. & Alidaee, Bahram & Dorsey, Robert E. & Johnson, John D., 1998. "Global optimization for artificial neural networks: A tabu search application," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 570-584, April.
    6. Sexton, Randall S. & Dorsey, Robert E. & Johnson, John D., 1999. "Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing," European Journal of Operational Research, Elsevier, vol. 114(3), pages 589-601, May.
    7. Curry, B. & Morgan, P., 1997. "Neural networks: a need for caution," Omega, Elsevier, vol. 25(1), pages 123-133, February.
    8. Abad, P. L. & Banks, W. J., 1993. "New LP based heuristics for the classification problem," European Journal of Operational Research, Elsevier, vol. 67(1), pages 88-100, May.
    9. Selwyn Piramuthu & Harish Ragavan & Michael J. Shaw, 1998. "Using Feature Construction to Improve the Performance of Neural Networks," Management Science, INFORMS, vol. 44(3), pages 416-430, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pendharkar, Parag C., 2006. "Scale economies and production function estimation for object-oriented software component and source code documentation size," European Journal of Operational Research, Elsevier, vol. 172(3), pages 1040-1050, August.
    2. P Pendharkar, 2009. "Misclassification cost minimizing fitness functions for genetic algorithm-based artificial neural network classifiers," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(8), pages 1123-1134, August.
    3. J. J. Glen, 2004. "Dichotomous categorical variable formation in mathematical programming discriminant analysis models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 575-596, June.
    4. Baykasoglu, Adil & Ozbakir, Lale, 2007. "MEPAR-miner: Multi-expression programming for classification rule mining," European Journal of Operational Research, Elsevier, vol. 183(2), pages 767-784, December.
    5. Chi, Li-Chiu & Tang, Tseng-Chung, 2007. "Impact of reorganization announcements on distressed-stock returns," Economic Modelling, Elsevier, vol. 24(5), pages 749-767, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pendharkar, Parag C., 2002. "A computational study on the performance of artificial neural networks under changing structural design and data distribution," European Journal of Operational Research, Elsevier, vol. 138(1), pages 155-177, April.
    2. Sueyoshi, Toshiyuki, 2006. "DEA-Discriminant Analysis: Methodological comparison among eight discriminant analysis approaches," European Journal of Operational Research, Elsevier, vol. 169(1), pages 247-272, February.
    3. Zopounidis, Constantin & Doumpos, Michael, 2002. "Multicriteria classification and sorting methods: A literature review," European Journal of Operational Research, Elsevier, vol. 138(2), pages 229-246, April.
    4. Sudhir Nanda & Parag Pendharkar, 2001. "Linear models for minimizing misclassification costs in bankruptcy prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 10(3), pages 155-168, September.
    5. Mingue Sun, 2009. "Liquidity Risk and Financial Competition: A Mixed Integer Programming Model for Multiple-Class Discriminant Analysis," Working Papers 0102, College of Business, University of Texas at San Antonio.
    6. B Dengiz & C Alabas-Uslu & O Dengiz, 2009. "A tabu search algorithm for the training of neural networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 282-291, February.
    7. Curry, B. & Morgan, P. H., 2004. "Evaluating Kohonen's learning rule: An approach through genetic algorithms," European Journal of Operational Research, Elsevier, vol. 154(1), pages 191-205, April.
    8. Sueyoshi, Toshiyuki, 2004. "Mixed integer programming approach of extended DEA-discriminant analysis," European Journal of Operational Research, Elsevier, vol. 152(1), pages 45-55, January.
    9. Mingue Sun, 2009. "Liquidity Risk and Financial Competition: A Mixed Integer Programming Model for Multiple-Class Discriminant Analysis," Working Papers 0102, College of Business, University of Texas at San Antonio.
    10. Saïd Hanafi & Nicola Yanev, 2011. "Tabu search approaches for solving the two-group classification problem," Annals of Operations Research, Springer, vol. 183(1), pages 25-46, March.
    11. Gupta, Jatinder N. D. & Sexton, Randall S., 1999. "Comparing backpropagation with a genetic algorithm for neural network training," Omega, Elsevier, vol. 27(6), pages 679-684, December.
    12. Asaju La’aro Bolaji & Aminu Ali Ahmad & Peter Bamidele Shola, 2018. "Training of neural network for pattern classification using fireworks algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(1), pages 208-215, February.
    13. Zhang, Gioqinang & Hu, Michael Y., 1998. "Neural network forecasting of the British Pound/US Dollar exchange rate," Omega, Elsevier, vol. 26(4), pages 495-506, August.
    14. Wen, Ue-Pyng & Lan, Kuen-Ming & Shih, Hsu-Shih, 2009. "A review of Hopfield neural networks for solving mathematical programming problems," European Journal of Operational Research, Elsevier, vol. 198(3), pages 675-687, November.
    15. Ilkyeong Moon & Sanghyup Lee & Moonsoo Shin & Kwangyeol Ryu, 2016. "Evolutionary resource assignment for workload-based production scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 375-388, April.
    16. Geraint Johnes, 2000. "Up Around the Bend: Linear and nonlinear models of the UK economy compared," International Review of Applied Economics, Taylor & Francis Journals, vol. 14(4), pages 485-493.
    17. repec:lan:wpaper:4408 is not listed on IDEAS
    18. Joo, Rocío & Bertrand, Sophie & Chaigneau, Alexis & Ñiquen, Miguel, 2011. "Optimization of an artificial neural network for identifying fishing set positions from VMS data: An example from the Peruvian anchovy purse seine fishery," Ecological Modelling, Elsevier, vol. 222(4), pages 1048-1059.
    19. Siddhartha Bhattacharyya, 1999. "Direct Marketing Performance Modeling Using Genetic Algorithms," INFORMS Journal on Computing, INFORMS, vol. 11(3), pages 248-257, August.
    20. repec:lan:wpaper:4839 is not listed on IDEAS
    21. Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2020. "Machine learning with parallel neural networks for analyzing and forecasting electricity demand," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 569-597, August.
    22. Gestel, Tony Van & Baesens, Bart & Suykens, Johan A.K. & Van den Poel, Dirk & Baestaens, Dirk-Emma & Willekens, Marleen, 2006. "Bayesian kernel based classification for financial distress detection," European Journal of Operational Research, Elsevier, vol. 172(3), pages 979-1003, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:29:y:2001:i:4:p:361-374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.