IDEAS home Printed from https://ideas.repec.org/a/ers/journl/vxxiiiy2020i4p1113-1135.html
   My bibliography  Save this article

Assessment of Trajectories of Non-bankrupt and Bankrupt Enterprises

Author

Listed:
  • Tomasz Korol

Abstract

Purpose: The aim of this study is to show how long-term trajectories of enterprises can be used to increase the forecasting horizon of bankruptcy prediction models. Design/Methodology/Approach: The author used seven popular forecasting models (two from Europe, two from Asia, two from North America and one from Latin America). These models (five multivariate discriminant analysis models and two logit models) were used to develop 17-year trajectories separately for non-bankrupt enterprises and those at risk of financial failure. Findings: Based on a sample of 200 enterprises, the author evaluated the differences between non-bankrupt and bankrupt firms in development during 17 years of activity. The long-term usability of the models was demonstrated. To date, these models have been used only to forecast bankruptcy risk in the short term (1–3 years’ prediction horizon). This paper demonstrates that these models can also serve to evaluate long-term growth and to identify the first symptoms of future bankruptcy risk many years before it actually occurs. Practical Implications: It was proven and specified that long-term developmental differences exist between non-threatened and future insolvent companies. These studies proved that the process of going bankrupt is very long, perhaps even longer than the literature has previously demonstrated. Originality/value: This study is one of the first attempts in the literature globally to assess such long-term enterprise trajectories. Additionally by implementing a dynamic approach to the financial ratios in the risk-forecasting model let visualize the changes occurring in the company.

Suggested Citation

  • Tomasz Korol, 2020. "Assessment of Trajectories of Non-bankrupt and Bankrupt Enterprises," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 1113-1135.
  • Handle: RePEc:ers:journl:v:xxiii:y:2020:i:4:p:1113-1135
    as

    Download full text from publisher

    File URL: https://www.ersj.eu/journal/1734/download
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Guoqiang & Y. Hu, Michael & Eddy Patuwo, B. & C. Indro, Daniel, 1999. "Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis," European Journal of Operational Research, Elsevier, vol. 116(1), pages 16-32, July.
    2. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    3. L. Lin & J. Piesse, 2004. "Identification of corporate distress in UK industrials: a conditional probability analysis approach," Applied Financial Economics, Taylor & Francis Journals, vol. 14(2), pages 73-82.
    4. Emel, Ahmet Burak & Oral, Muhittin & Reisman, Arnold & Yolalan, Reha, 2003. "A credit scoring approach for the commercial banking sector," Socio-Economic Planning Sciences, Elsevier, vol. 37(2), pages 103-123, June.
    5. Panayiotis G. Curtis & Michael Hanias & Eleftherios Kourtis & Mixalis Kourtis, 2020. "Data Envelopment Analysis (DEA) and Financial Ratios: Α Pro-Stakeholders’ View of Performance Measurement for Sustainable Value Creation of the Wind Energy," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(2), pages 326-350.
    6. du Jardin, Philippe & Séverin, Eric, 2012. "Forecasting financial failure using a Kohonen map: A comparative study to improve model stability over time," European Journal of Operational Research, Elsevier, vol. 221(2), pages 378-396.
    7. Murugan Anandarajan & Picheng Lee & Asokan Anandarajan, 2001. "Bankruptcy prediction of financially stressed firms: an examination of the predictive accuracy of artificial neural networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 10(2), pages 69-81, June.
    8. Muriel Perez, 2006. "Artificial Neural Networks And Bankruptcy Forecasting : A State Of The Art," Post-Print halshs-00522129, HAL.
    9. de Andres, Javier & Landajo, Manuel & Lorca, Pedro, 2005. "Forecasting business profitability by using classification techniques: A comparative analysis based on a Spanish case," European Journal of Operational Research, Elsevier, vol. 167(2), pages 518-542, December.
    10. du Jardin, Philippe & Séverin, Eric, 2011. "Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model," MPRA Paper 44262, University Library of Munich, Germany.
    11. Selwyn Piramuthu & Harish Ragavan & Michael J. Shaw, 1998. "Using Feature Construction to Improve the Performance of Neural Networks," Management Science, INFORMS, vol. 44(3), pages 416-430, March.
    12. Arindam Bandyopadhyay, 2006. "Predicting probability of default of Indian corporate bonds: logistic and Z-score model approaches," Journal of Risk Finance, Emerald Group Publishing, vol. 7(3), pages 255-272, May.
    13. Carlos Serrano-Cinca, 1997. "Feedforward neural networks in the classification of financial information," The European Journal of Finance, Taylor & Francis Journals, vol. 3(3), pages 183-202.
    14. Teija Laitinen & Maria Kankaanpaa, 1999. "Comparative analysis of failure prediction methods: the Finnish case," European Accounting Review, Taylor & Francis Journals, vol. 8(1), pages 67-92.
    15. G.P. Kourtis & L.P. Κourtis & M.P. Kourtis & P. Curtis, 2017. "Fundamental Analysis, Stock Returns and High B/M Companies," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(4), pages 3-18.
    16. Korol, Tomasz, 2013. "Early warning models against bankruptcy risk for Central European and Latin American enterprises," Economic Modelling, Elsevier, vol. 31(C), pages 22-30.
    17. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    18. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    19. Edward I. Altman & Gabriele Sabato, 2013. "MODELING CREDIT RISK FOR SMEs: EVIDENCE FROM THE US MARKET," World Scientific Book Chapters, in: Oliviero Roggi & Edward I Altman (ed.), Managing and Measuring Risk Emerging Global Standards and Regulations After the Financial Crisis, chapter 9, pages 251-279, World Scientific Publishing Co. Pte. Ltd..
    20. Vineet Agarwal & Richard Taffler, 2007. "Twenty‐five years of the Taffler z‐score model: Does it really have predictive ability?," Accounting and Business Research, Taylor & Francis Journals, vol. 37(4), pages 285-300.
    21. Riyaz Sikora & Michael Shaw, 1994. "A Double-Layered Learning Approach to Acquiring Rules for Classification: Integrating Genetic Algorithms with Similarity-Based Learning," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 174-187, May.
    22. repec:ers:journl:v:v:y:2017:i:4:p:3-18 is not listed on IDEAS
    23. Thomas E. McKee, 2003. "Rough sets bankruptcy prediction models versus auditor signalling rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(8), pages 569-586.
    24. Chris Charalambous & Andreas Charitou & Froso Kaourou, 2000. "Comparative Analysis of Artificial Neural Network Models: Application in Bankruptcy Prediction," Annals of Operations Research, Springer, vol. 99(1), pages 403-425, December.
    25. Edward I Altman & Tara K N Baidya & Luis Manoel Ribeiro Dias, 1979. "Assessing Potential Financial Problems for Firms in Brazil," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 10(2), pages 9-24, June.
    26. Lacher, R. C. & Coats, Pamela K. & Sharma, Shanker C. & Fant, L. Franklin, 1995. "A neural network for classifying the financial health of a firm," European Journal of Operational Research, Elsevier, vol. 85(1), pages 53-65, August.
    27. P. Du Jardin & E. Séverin, 2012. "Forecasting financial failure using a Kohonen map: a comparative study to improve bankruptcy model over time," Post-Print hal-00801853, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pawel Dec & Piotr Masiukiewicz, 2021. "Survival of Enterprises versus Sustainable Development," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 763-775.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Korol, 2018. "The Implementation of Fuzzy Logic in Forecasting Financial Ratios," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 12(2), June.
    2. Korol, Tomasz, 2013. "Early warning models against bankruptcy risk for Central European and Latin American enterprises," Economic Modelling, Elsevier, vol. 31(C), pages 22-30.
    3. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    4. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    5. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    6. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    7. Francesco Ciampi & Valentina Cillo & Fabio Fiano, 2020. "Combining Kohonen maps and prior payment behavior for small enterprise default prediction," Small Business Economics, Springer, vol. 54(4), pages 1007-1039, April.
    8. David Veganzones, 2022. "Corporate failure prediction using threshold‐based models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 956-979, August.
    9. Şaban Çelik & Bora Aktan & Bruce Burton, 2022. "Firm dynamics and bankruptcy processes: A new theoretical model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 567-591, April.
    10. Leila Bateni & Farshid Asghari, 2020. "Bankruptcy Prediction Using Logit and Genetic Algorithm Models: A Comparative Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 335-348, January.
    11. du Jardin, Philippe & Séverin, Eric, 2011. "Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model," MPRA Paper 44262, University Library of Munich, Germany.
    12. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    13. Alessandra Amendola & Marialuisa Restaino & Luca Sensini, 2010. "Variabile Selection in Forecasting Models for Corporate Bankruptcy," Working Papers 3_216, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    14. du Jardin, Philippe, 2010. "Predicting bankruptcy using neural networks and other classification methods: the influence of variable selection techniques on model accuracy," MPRA Paper 44375, University Library of Munich, Germany.
    15. Tomasz Korol, 2019. "Dynamic Bankruptcy Prediction Models for European Enterprises," JRFM, MDPI, vol. 12(4), pages 1-15, December.
    16. Kamesh Korangi & Christophe Mues & Cristi'an Bravo, 2021. "A transformer-based model for default prediction in mid-cap corporate markets," Papers 2111.09902, arXiv.org, revised Apr 2023.
    17. Youssef Zizi & Amine Jamali-Alaoui & Badreddine El Goumi & Mohamed Oudgou & Abdeslam El Moudden, 2021. "An Optimal Model of Financial Distress Prediction: A Comparative Study between Neural Networks and Logistic Regression," Risks, MDPI, vol. 9(11), pages 1-24, November.
    18. Korangi, Kamesh & Mues, Christophe & Bravo, Cristián, 2023. "A transformer-based model for default prediction in mid-cap corporate markets," European Journal of Operational Research, Elsevier, vol. 308(1), pages 306-320.
    19. du Jardin, Philippe, 2008. "Bankruptcy prediction and neural networks: The contribution of variable selection methods," MPRA Paper 44384, University Library of Munich, Germany.
    20. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.

    More about this item

    Keywords

    Forecasting; trajectory; bankruptcy models; financial crisis.;
    All these keywords.

    JEL classification:

    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • F37 - International Economics - - International Finance - - - International Finance Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ers:journl:v:xxiii:y:2020:i:4:p:1113-1135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marios Agiomavritis (email available below). General contact details of provider: https://ersj.eu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.