Predicting Corporate Failure Using a Neural Network Approach
Author
Abstract
Suggested Citation
DOI: 10.1002/j.1099-1174.1995.tb00083.x
Download full text from publisher
References listed on IDEAS
- Duane B. Kennedy, 1992. "Classification techniques in accounting research: Empirical evidence of comparative performance," Contemporary Accounting Research, John Wiley & Sons, vol. 8(2), pages 419-442, March.
- Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, vol. 38(7), pages 926-947, July.
- Gessner, Guy & Malhotra, Naresh K. & Kamakura, Wagner A. & Zmijewski, Mark E., 1988. "Estimating models with binary dependent variables: Some theoretical and empirical observations," Journal of Business Research, Elsevier, vol. 16(1), pages 49-65, January.
- Kurt M. Fanning & Kenneth O. Cogger, 1994. "A Comparative Analysis of Artificial Neural Networks Using Financial Distress Prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 3(4), pages 241-252, December.
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
- Ting†Peng Liang & John S. Chandler & Ingoo Han & Jinsheng Roan, 1992. "An empirical investigation of some data effects on the classification accuracy of probit, ID3, and neural networks," Contemporary Accounting Research, John Wiley & Sons, vol. 9(1), pages 306-328, September.
- Beaver, Wh, 1968. "Market Prices, Financial Ratios, And Prediction Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 6(2), pages 179-192.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Balcaen S. & Ooghe H., 2004.
"Alternative methodologies in studies on business failure: do they produce better results than the classic statistical methods?,"
Vlerick Leuven Gent Management School Working Paper Series
2004-16, Vlerick Leuven Gent Management School.
- S. Balcaen & H. Ooghe, 2004. "Alternative methodologies in studies on business failure: do they produce better results than the classical statistical methods?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/249, Ghent University, Faculty of Economics and Business Administration.
- Zhang, Guoqiang & Y. Hu, Michael & Eddy Patuwo, B. & C. Indro, Daniel, 1999. "Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis," European Journal of Operational Research, Elsevier, vol. 116(1), pages 16-32, July.
- Paul P. M. Pompe & Jan Bilderbeek, 2005. "Bankruptcy prediction: the influence of the year prior to failure selected for model building and the effects in a period of economic decline," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 13(2), pages 95-112, June.
- Jayasekera, Ranadeva, 2018. "Prediction of company failure: Past, present and promising directions for the future," International Review of Financial Analysis, Elsevier, vol. 55(C), pages 196-208.
- Ehsan Habib Feroz & Taek Mu Kwon & Victor S. Pastena & Kyungjoo Park, 2000. "The efficacy of red flags in predicting the SEC's targets: an artificial neural networks approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 9(3), pages 145-157, September.
- Daniel E. O'Leary, 2010. "Intelligent Systems in Accounting, Finance and Management: ISI journal and proceeding citations, and research issues from most‐cited papers," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 17(1), pages 41-58, January.
- Andreas Charitou & Evi Neophytou & Chris Charalambous, 2004. "Predicting corporate failure: empirical evidence for the UK," European Accounting Review, Taylor & Francis Journals, vol. 13(3), pages 465-497.
- Daniel E. O'Leary, 2009. "Downloads and citations in Intelligent Systems in Accounting, Finance and Management," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 16(1‐2), pages 21-31, January.
- Jackson, Richard H.G. & Wood, Anthony, 2013. "The performance of insolvency prediction and credit risk models in the UK: A comparative study," The British Accounting Review, Elsevier, vol. 45(3), pages 183-202.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Barniv, Ran & Mehrez, Abraham & Kline, Douglas M., 2000. "Confidence intervals for controlling the probability of bankruptcy," Omega, Elsevier, vol. 28(5), pages 555-565, October.
- James R. Coakley & Carol E. Brown, 2000. "Artificial neural networks in accounting and finance: modeling issues," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 9(2), pages 119-144, June.
- Zhang, Guoqiang & Y. Hu, Michael & Eddy Patuwo, B. & C. Indro, Daniel, 1999. "Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis," European Journal of Operational Research, Elsevier, vol. 116(1), pages 16-32, July.
- Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
- Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
- Kurt M. Fanning & Kenneth O. Cogger, 1994. "A Comparative Analysis of Artificial Neural Networks Using Financial Distress Prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 3(4), pages 241-252, December.
- Şaban Çelik & Bora Aktan & Bruce Burton, 2022. "Firm dynamics and bankruptcy processes: A new theoretical model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 567-591, April.
- Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
- Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
- repec:hum:wpaper:sfb649dp2013-037 is not listed on IDEAS
- Wolfgang Härdle & Yuh-Jye Lee & Dorothea Schäfer & Yi-Ren Yeh, 2009. "Variable selection and oversampling in the use of smooth support vector machines for predicting the default risk of companies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(6), pages 512-534.
- En-Der Su & Shih-Ming Huang, 2010. "Comparing Firm Failure Predictions Between Logit, KMV, and ZPP Models: Evidence from Taiwan’s Electronics Industry," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(3), pages 209-239, September.
- Nandita Mishra & Shruti Ashok & Deepak Tandon, 2024. "Predicting Financial Distress in the Indian Banking Sector: A Comparative Study Between the Logistic Regression, LDA and ANN Models," Global Business Review, International Management Institute, vol. 25(6), pages 1540-1558, December.
- Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007.
"Multi-period corporate default prediction with stochastic covariates,"
Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
- Darrel Duffie & Leandro Saita & Ke Wang, 2005. "Multi-Period Corporate Default Prediction With Stochastic Covariates," CIRJE F-Series CIRJE-F-373, CIRJE, Faculty of Economics, University of Tokyo.
- Darrel Duffie & Leandro Saita & Ke Wang, 2005. "Multi-Period Corporate Default Prediction With Stochastic Covariates," CARF F-Series CARF-F-047, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Darrell Duffie & Leandro Siata & Ke Wang, 2006. "Multi-Period Corporate Default Prediction With Stochastic Covariates," NBER Working Papers 11962, National Bureau of Economic Research, Inc.
- Zaghdoudi Khemais & Djebali Nesrine & Mezni Mohamed, 2016. "Credit Scoring and Default Risk Prediction: A Comparative Study between Discriminant Analysis & Logistic Regression," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 8(4), pages 39-53, April.
- Adler Haymans Manurung & Derwin Suhartono & Benny Hutahayan & Noptovius Halimawan, 2023. "Probability Bankruptcy Using Support Vector Regression Machines," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 13(1), pages 1-3.
- Nguyen, Ha, 2023. "An empirical application of Particle Markov Chain Monte Carlo to frailty correlated default models," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 103-121.
- Sanjay Sehgal & Ritesh Kumar Mishra & Ajay Jaisawal, 2021. "A search for macroeconomic determinants of corporate financial distress," Indian Economic Review, Springer, vol. 56(2), pages 435-461, December.
- du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
- Hui Hu & Milind Sathye, 2015. "Predicting Financial Distress in the Hong Kong Growth Enterprises Market from the Perspective of Financial Sustainability," Sustainability, MDPI, vol. 7(2), pages 1-15, January.
- Thomas E. Mckee, 2000. "Developing a bankruptcy prediction model via rough sets theory," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 9(3), pages 159-173, September.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:4:y:1995:i:2:p:95-111. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.