IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v40y2021i4p708-730.html
   My bibliography  Save this article

The Effect of Individual Online Reviews on Purchase Likelihood

Author

Listed:
  • Prasad Vana

    (Tuck School of Business, Hanover, New Hampshire 03755)

  • Anja Lambrecht

    (London Business School, London NW1 4SA, United Kingdom)

Abstract

Online product reviews constitute a powerful source of information for consumers. Past research has studied the effect of aggregate measures of reviews (such as average product rating and number of reviews) on consumer behavior. In this study, we investigate how individual reviews displayed on a product web page affect consumers’ purchase likelihood. Identifying this effect is challenging because retailers are free to select which reviews to display on the product page and in what order, making the display of reviews in particular positions potentially endogenous. We address this challenge by utilizing an empirical context in which the retailer displays reviews by recency and exploit the variation in review positions generated as newer reviews are added on top of older ones. We find that individual reviews have a strong effect on consumer purchase decisions even after accounting for a product’s average rating. These effects are particularly pronounced when individual reviews help consumers resolve uncertainty about the product or contrast with the aggregate information that is instantly available on the product page.

Suggested Citation

  • Prasad Vana & Anja Lambrecht, 2021. "The Effect of Individual Online Reviews on Purchase Likelihood," Marketing Science, INFORMS, vol. 40(4), pages 708-730, July.
  • Handle: RePEc:inm:ormksc:v:40:y:2021:i:4:p:708-730
    DOI: 10.1287/mksc.2020.1278
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.2020.1278
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.2020.1278?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chunhua Wu & Hai Che & Tat Y. Chan & Xianghua Lu, 2015. "The Economic Value of Online Reviews," Marketing Science, INFORMS, vol. 34(5), pages 739-754, September.
    2. Raluca M. Ursu, 2018. "The Power of Rankings: Quantifying the Effect of Rankings on Online Consumer Search and Purchase Decisions," Marketing Science, INFORMS, vol. 37(4), pages 530-552, August.
    3. Sridhar Narayanan & Kirthi Kalyanam, 2015. "Position Effects in Search Advertising and their Moderators: A Regression Discontinuity Approach," Marketing Science, INFORMS, vol. 34(3), pages 388-407, May.
    4. Duan, Wenjing & Gu, Bin & Whinston, Andrew B., 2008. "The dynamics of online word-of-mouth and product sales—An empirical investigation of the movie industry," Journal of Retailing, Elsevier, vol. 84(2), pages 233-242.
    5. Babur De los Santos & Sergei Koulayev, 2017. "Optimizing Click-Through in Online Rankings with Endogenous Search Refinement," Marketing Science, INFORMS, vol. 36(4), pages 542-564, July.
    6. Yi Zhao & Sha Yang & Vishal Narayan & Ying Zhao, 2013. "Modeling Consumer Learning from Online Product Reviews," Marketing Science, INFORMS, vol. 32(1), pages 153-169, May.
    7. Tülin Erdem & Michael P. Keane & Baohong Sun, 2008. "A Dynamic Model of Brand Choice When Price and Advertising Signal Product Quality," Marketing Science, INFORMS, vol. 27(6), pages 1111-1125, 11-12.
    8. David Godes & Dina Mayzlin, 2004. "Using Online Conversations to Study Word-of-Mouth Communication," Marketing Science, INFORMS, vol. 23(4), pages 545-560, June.
    9. Pradeep K. Chintagunta & Shyam Gopinath & Sriram Venkataraman, 2010. "The Effects of Online User Reviews on Movie Box Office Performance: Accounting for Sequential Rollout and Aggregation Across Local Markets," Marketing Science, INFORMS, vol. 29(5), pages 944-957, 09-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Yu-Xin & Zhang, Chuan, 2023. "An end-to-end deep learning model for solving data-driven newsvendor problem with accessibility to textual review data," International Journal of Production Economics, Elsevier, vol. 265(C).
    2. Janina Seutter & Kristin Kutzner & Maren Stadtländer & Dennis Kundisch & Ralf Knackstedt, 2023. "“Sorry, too much information”—Designing online review systems that support information search and processing," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-19, December.
    3. Chen, Yutong, 2024. "Does the gig economy discriminate against women? Evidence from physicians in China," Journal of Development Economics, Elsevier, vol. 169(C).
    4. Jalili, Monire & Çil, Eren B. & Pangburn, Michael S., 2024. "Pricing and structuring product trials: Separate versus mixed wine tastings," European Journal of Operational Research, Elsevier, vol. 312(2), pages 668-683.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sulin Ba & Yuan Jin & Xinxin Li & Xianghua Lu, 2020. "One Size Fits All? The Differential Impact of Online Reviews and Coupons," Production and Operations Management, Production and Operations Management Society, vol. 29(10), pages 2403-2424, October.
    2. Cheng Zhao & Chong Alex Wang, 2023. "A cross-site comparison of online review manipulation using Benford’s law," Electronic Commerce Research, Springer, vol. 23(1), pages 365-406, March.
    3. Yuchi Zhang & David Godes, 2018. "Learning from Online Social Ties," Marketing Science, INFORMS, vol. 37(3), pages 425-444, May.
    4. Zheng, Lili, 2021. "The classification of online consumer reviews: A systematic literature review and integrative framework," Journal of Business Research, Elsevier, vol. 135(C), pages 226-251.
    5. Zhang, Tao & Li, Gang & Cheng, T.C.E. & Lai, Kin Keung, 2017. "Welfare economics of review information: Implications for the online selling platform owner," International Journal of Production Economics, Elsevier, vol. 184(C), pages 69-79.
    6. Sina Golara & Kevin J. Dooley & Nasim Mousavi, 2021. "Are Dealers Still Relevant? How Dealer Service Quality Impacts Manufacturer Success," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3560-3578, October.
    7. (Kay) Byun, Kyung-ah & Ma, Minghui & Kim, Kevin & Kang, Taeghyun, 2021. "Buying a New Product with Inconsistent Product Reviews from Multiple Sources: The Role of Information Diagnosticity and Advertising," Journal of Interactive Marketing, Elsevier, vol. 55(C), pages 81-103.
    8. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    9. Haoyan Sun & Ming Fan & Yong Tan, 2020. "An Empirical Analysis of Seller Advertising Strategies in an Online Marketplace," Information Systems Research, INFORMS, vol. 31(1), pages 37-56, March.
    10. Raluca M. Ursu & Qingliang Wang & Pradeep K. Chintagunta, 2020. "Search Duration," Marketing Science, INFORMS, vol. 39(5), pages 849-871, September.
    11. Wang, Feng & Liu, Xuefeng & Fang, Eric (Er), 2015. "User Reviews Variance, Critic Reviews Variance, and Product Sales: An Exploration of Customer Breadth and Depth Effects," Journal of Retailing, Elsevier, vol. 91(3), pages 372-389.
    12. Carlson, Keith & Kopalle, Praveen K. & Riddell, Allen & Rockmore, Daniel & Vana, Prasad, 2023. "Complementing human effort in online reviews: A deep learning approach to automatic content generation and review synthesis," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 54-74.
    13. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2017. "Empirical Models of Learning Dynamics: A Survey of Recent Developments," International Series in Operations Research & Management Science, in: Berend Wierenga & Ralf van der Lans (ed.), Handbook of Marketing Decision Models, edition 2, chapter 0, pages 223-257, Springer.
    14. Thaís L. D. Souza & Marislei Nishijima & Ana C. P. Fava, 2019. "Do consumer and expert reviews affect the length of time a film is kept on screens in the USA?," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 43(1), pages 145-171, March.
    15. Marchand, André & Hennig-Thurau, Thorsten & Wiertz, Caroline, 2017. "Not all digital word of mouth is created equal: Understanding the respective impact of consumer reviews and microblogs on new product success," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 336-354.
    16. Harris, Mark N. & Novarese, Marco & Wilson, Chris M., 2022. "Being in the right place: A natural field experiment on the causes of position effects in individual choice," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 24-40.
    17. Jinyang Zheng & Fei Ren & Yong Tan & Xi Chen, 2020. "Optimizing Two-Sided Promotion for Transportation Network Companies: A Structural Model with Conditional Bayesian Learning," Information Systems Research, INFORMS, vol. 31(3), pages 692-714, September.
    18. Young Kwark & Gene Moo Lee & Paul A. Pavlou & Liangfei Qiu, 2021. "On the Spillover Effects of Online Product Reviews on Purchases: Evidence from Clickstream Data," Information Systems Research, INFORMS, vol. 32(3), pages 895-913, September.
    19. Takumi Kato, 2022. "Rating valence versus rating distribution: perceived helpfulness of word of mouth in e-commerce," SN Business & Economics, Springer, vol. 2(11), pages 1-24, November.
    20. Aishwarya Deep Shukla & Guodong (Gordon) Gao & Ritu Agarwal, 2021. "How Digital Word-of-Mouth Affects Consumer Decision Making: Evidence from Doctor Appointment Booking," Management Science, INFORMS, vol. 67(3), pages 1546-1568, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:40:y:2021:i:4:p:708-730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.