IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v19y2000i3p226-243.html
   My bibliography  Save this article

MOVIEMOD: An Implementable Decision-Support System for Prerelease Market Evaluation of Motion Pictures

Author

Listed:
  • Jehoshua Eliashberg

    (University of Pennsylvania, The Wharton School, Philadelphia, Pennsylvania 19104-6371)

  • Jedid-Jah Jonker

    (Tinbergen Institute and Econometric Institute, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands)

  • Mohanbir S. Sawhney

    (Kellogg Graduate School of Management, Northwestern University, Evanston, Illinois 60208)

  • Berend Wierenga

    (Rotterdam School of Management, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands)

Abstract

In spite of the high financial stakes involved in marketing new motion pictures, marketing science models have not been applied to the market evaluation of motion pictures. The motion picture industry poses some unique challenges. For example, the consumer adoption process for movies is very sensitive to word-of-mouth interactions, which are difficult to measure and predict the movie has been released. In this article, we undertake the challenge to develop and implement MOVIEMOD—a prerelease market evaluation model for the motion picture industry. MOVIEMOD is designed to generate box-office forecasts and to support marketing decisions for a new movie after the movie has been produced (or when it is available in a rough cut) but before it has been released. Unlike other forecasting models for motion pictures, the calibration of MOVIEMOD does not require any actual sales data. Also, the data collection time for a product with a limited lifetime such as a movie should not take too long. For MOVIEMOD it takes only three hours in a “consumer clinic” to collect the data needed for the prediction of box-office sales and the evaluation of alternative marketing plans. The model is based on a behavioral representation of the consumer adoption process for movies as a macroflow process. The heart of MOVIEMOD is an interactive Markov chain model describing the macro-flow process. According to this model, at any point in time with respect to the movie under study, a consumer can be found in one of the following behavioral states: undecided, considerer, rejecter, positive spreader, negative spreader, and inactive. The progression of consumers through the behavioral states depends on a set of factors that are related to the marketing mix, as well as on a set of more general factors that characterize the movie-going behavior in the population of interest. This interactive Markov chain model allows us to account for word-of-mouth interactions among potential adopters and several types of word-of-mouth spreaders in the population. Marketing variables that influence the transitions among the states are movie theme acceptability, promotion strategy, distribution strategy, and the movie experience. The model is calibrated in a consumer clinic experiment. Respondents fill out a questionnaire with general items related to their movie-going and movie communication behavior, they are exposed to different sets of information stimuli, they are actually shown the movie, and finally, they fill outpostmovie evaluations, including word-of-mouth intentions.These measures are used to estimate the word-of-mouth parameters and other behavioral factors, as well as the movie-specific parameters of the model. MOVIEMOD produces forecasts of the awareness, adoption intention, and cumulative penetration for a new movie within the population of interest for a given base marketing plan. It also provides diagnostic information on the likely impact of alternative marketing plans on the commercial performance of a new movie. We describe two applications of MOVIEMOD: One is a pilot study conducted without studio cooperation in the United States, and the other is a full-fledged implementation conducted with cooperation of the movie's distributor and exhibitor in the Netherlands. The implementations suggest that MOVIEMOD produces reasonably accurate forecasts of box-office performance. More importantly, the model offers the opportunity to simulate the effects of alternative marketing plans. In the Dutch application, the effects of extra advertising, extra magazine articles, extra TV commercials, and higher trailer intensity (compared to the base marketing plan of the distributor) were analyzed. We demonstrate the value of these decision-support capabilities of MOVIEMOD in assisting managers to identify a final plan that resulted in an almost 50% increase in the test movie's revenue performance, compared to the marketing plan initially contemplated. Management implemented this recommended plan, which resulted in box-office sales that were within 5% of the MOVIEMOD prediction. MOVIEMOD was also tested against several benchmark models, and its prediction was better in all cases. An evaluation of MOVIEMOD jointly by the Dutch exhibitor and the distributor showed that both parties were positive about and appreciated its performance as a decision-support tool. In particular, the distributor, who has more stakes in the domestic performance of its movies, showed a great interest in using MOVIEMOD for subsequent evaluations of new movies prior to their release. Based on such evaluations and the initial validation results, MOVIEMOD can fruitfully (and inexpensively) be used to provide researchers and managers with a deeper understanding of the factors that drive audience response to new motion pictures, and it can be instrumental in developing other decision-support systems that can improve the odds of commercial success of new experiential products.

Suggested Citation

  • Jehoshua Eliashberg & Jedid-Jah Jonker & Mohanbir S. Sawhney & Berend Wierenga, 2000. "MOVIEMOD: An Implementable Decision-Support System for Prerelease Market Evaluation of Motion Pictures," Marketing Science, INFORMS, vol. 19(3), pages 226-243, January.
  • Handle: RePEc:inm:ormksc:v:19:y:2000:i:3:p:226-243
    DOI: 10.1287/mksc.19.3.226.11796
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.19.3.226.11796
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.19.3.226.11796?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joe A. Dodson, Jr. & Eitan Muller, 1978. "Models of New Product Diffusion Through Advertising and Word-of-Mouth," Management Science, INFORMS, vol. 24(15), pages 1568-1578, November.
    2. Vijay Mahajan & Eitan Muller & Roger A. Kerin, 1984. "Introduction Strategy for New Products with Positive and Negative Word-of-Mouth," Management Science, INFORMS, vol. 30(12), pages 1389-1404, December.
    3. Glen L. Urban, 1970. "Sprinter Mod III: A Model for the Analysis of New Frequently Purchased Consumer Products," Operations Research, INFORMS, vol. 18(5), pages 805-854, October.
    4. Ramya Neelamegham & Pradeep Chintagunta, 1999. "A Bayesian Model to Forecast New Product Performance in Domestic and International Markets," Marketing Science, INFORMS, vol. 18(2), pages 115-136.
    5. Lewis G. Pringle & R. Dale Wilson & Edward I. Brody, 1982. "News: A Decision-Oriented Model for New Product Analysis and Forecasting," Marketing Science, INFORMS, vol. 1(1), pages 1-29.
    6. John R. Hauser & Kenneth J. Wisniewski, 1982. "Dynamic Analysis of Consumer Response to Marketing Strategies," Management Science, INFORMS, vol. 28(5), pages 455-486, May.
    7. Glen L. Urban & John R. Hauser & John H. Roberts, 1990. "Prelaunch Forecasting of New Automobiles," Management Science, INFORMS, vol. 36(4), pages 401-421, April.
    8. John H. Roberts & Glen L. Urban, 1988. "Modeling Multiattribute Utility, Risk, and Belief Dynamics for New Consumer Durable Brand Choice," Management Science, INFORMS, vol. 34(2), pages 167-185, February.
    9. Jehoshua Eliashberg & Mohanbir S. Sawhney, 1994. "Modeling Goes to Hollywood: Predicting Individual Differences in Movie Enjoyment," Management Science, INFORMS, vol. 40(9), pages 1151-1173, September.
    10. Mohanbir S. Sawhney & Jehoshua Eliashberg, 1996. "A Parsimonious Model for Forecasting Gross Box-Office Revenues of Motion Pictures," Marketing Science, INFORMS, vol. 15(2), pages 113-131.
    11. Dipak Jain & Vijay Mahajan & Eitan Muller, 1991. "Innovation Diffusion in the Presence of Supply Restrictions," Marketing Science, INFORMS, vol. 10(1), pages 83-90.
    12. Vijay Mahajan & Eitan Muller & Subhash Sharma, 1984. "An Empirical Comparison of Awareness Forecasting Models of New Product Introduction," Marketing Science, INFORMS, vol. 3(3), pages 179-197.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vardit Landsman & Moshe Givon, 2010. "The diffusion of a new service: Combining service consideration and brand choice," Quantitative Marketing and Economics (QME), Springer, vol. 8(1), pages 91-121, March.
    2. Gazley, Aaron & Clark, Gemma & Sinha, Ashish, 2011. "Understanding preferences for motion pictures," Journal of Business Research, Elsevier, vol. 64(8), pages 854-861, August.
    3. Kamrad, Bardia & Lele, Shreevardhan S. & Siddique, Akhtar & Thomas, Robert J., 2005. "Innovation diffusion uncertainty, advertising and pricing policies," European Journal of Operational Research, Elsevier, vol. 164(3), pages 829-850, August.
    4. Urban, Glen L. & Weinberg, Bruce D. & Hauser, John R., 1994. "Premarket forecasting of really new products," Working papers 3689-94., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    5. Urban, Glen L. & Hulland, John S. & Weinberg, Bruce., 1990. "Modeling, categorization, elimination, and consideration for new product forecasting of consumer durables," Working papers 3206-90., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    6. Sanjeev Swami & Jehoshua Eliashberg & Charles B. Weinberg, 1999. "SilverScreener: A Modeling Approach to Movie Screens Management," Marketing Science, INFORMS, vol. 18(3), pages 352-372.
    7. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    8. Jehoshua Eliashberg & Anita Elberse & Mark A.A.M. Leenders, 2006. "The Motion Picture Industry: Critical Issues in Practice, Current Research, and New Research Directions," Marketing Science, INFORMS, vol. 25(6), pages 638-661, 11-12.
    9. Kim, Taegu & Hong, Jungsik & Kang, Pilsung, 2015. "Box office forecasting using machine learning algorithms based on SNS data," International Journal of Forecasting, Elsevier, vol. 31(2), pages 364-390.
    10. Teck-Hua Ho & Sergei Savin & Christian Terwiesch, 2002. "Managing Demand and Sales Dynamics in New Product Diffusion Under Supply Constraint," Management Science, INFORMS, vol. 48(2), pages 187-206, February.
    11. Ana Suárez-Vázquez, 2011. "Critic power or star power? The influence of hallmarks of quality of motion pictures: an experimental approach," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 35(2), pages 119-135, May.
    12. Divakaran, Pradeep Kumar Ponnamma & Palmer, Adrian & Søndergaard, Helle Alsted & Matkovskyy, Roman, 2017. "Pre-launch Prediction of Market Performance for Short Lifecycle Products Using Online Community Data," Journal of Interactive Marketing, Elsevier, vol. 38(C), pages 12-28.
    13. Brianna JeeWon Paulich & V. Kumar, 2021. "Relating entertainment features in screenplays to movie performance: an empirical investigation," Journal of the Academy of Marketing Science, Springer, vol. 49(6), pages 1222-1242, November.
    14. Prasad Ashutosh & Bronnenberg Bart & Mahajan Vijay, 2004. "Product Entry Timing in Dual Distribution Channels: The Case of the Movie Industry," Review of Marketing Science, De Gruyter, vol. 2(1), pages 1-20, March.
    15. Jason M. T. Roos & Ron Shachar, 2014. "When Kerry Met Sally: Politics and Perceptions in the Demand for Movies," Management Science, INFORMS, vol. 60(7), pages 1617-1631, July.
    16. Jehoshua Eliashberg & Sam K. Hui & Z. John Zhang, 2007. "From Story Line to Box Office: A New Approach for Green-Lighting Movie Scripts," Management Science, INFORMS, vol. 53(6), pages 881-893, June.
    17. Sanjeev Swami & Martin L. Puterman & Charles B. Weinberg, 2001. "Play It Again, Sam? Optimal Replacement Policies for a Motion Picture Exhibitor," Manufacturing & Service Operations Management, INFORMS, vol. 3(4), pages 369-386, July.
    18. Palsule-Desai, Omkar D., 2013. "Supply chain coordination using revenue-dependent revenue sharing contracts," Omega, Elsevier, vol. 41(4), pages 780-796.
    19. Jehoshua Eliashberg & Sanjeev Swami & Charles B. Weinberg & Berend Wierenga, 2001. "Implementing and Evaluating SilverScreener: A Marketing Management Support System for Movie Exhibitors," Interfaces, INFORMS, vol. 31(3_supplem), pages 108-127, June.
    20. Xinlei Chen & Yuxin Chen & Charles Weinberg, 2013. "Learning about movies: the impact of movie release types on the nationwide box office," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 37(3), pages 359-386, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:19:y:2000:i:3:p:226-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.