IDEAS home Printed from https://ideas.repec.org/a/inm/orisre/v30y2019i3p787-804.html
   My bibliography  Save this article

Personalized Mobile Targeting with User Engagement Stages: Combining a Structural Hidden Markov Model and Field Experiment

Author

Listed:
  • Yingjie Zhang

    (Naveen Jindal School of Management, University of Texas at Dallas, Richardson, Texas 75080)

  • Beibei Li

    (Heinz College, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213)

  • Xueming Luo

    (Fox School of Business, Temple University, Philadelphia, Pennsylvania 19122)

  • Xiaoyi Wang

    (School of Management, Zhejiang University, 310058 Hangzhou, China)

Abstract

Low engagement rates and high attrition rates have been formidable challenges to mobile apps and their long-term success, especially for those whose revenues derive mainly from in-app purchases. To date, little is known about how companies can scientifically detect user engagement stages and optimize corresponding personalized-targeting promotion strategies to improve business revenues. This paper proposes a new structural forward-looking hidden Markov model (FHMM) combined with a randomized field experiment on app notification promotions. Our model can recover consumer latent engagement stages by accounting for both the time-varying nature of users’ engagement and their forward-looking consumption behavior. Although app users in most of the engagement stages are likely to become less dynamically engaged, this slippery slope of user engagement can be alleviated by randomized treatments of app promotions. The structural estimates from the FHMM with the field-experimental data also enable us to identify heterogeneity in the treatment effects, specifically in terms of the causal impact of app promotions on continuous app consumption behavior across different hidden engagement stages. Additionally, we simulate and optimize the revenues of different personalized-targeting promotion strategies with the structural estimates. Personalized dynamic engagement-based targeting based on the FHMM can, compared with nonpersonalized mass promotion, generate 101.84% more revenue for the price promotion and 72.46% more revenue for the free-content promotion. It also can generate substantially higher revenues than the experience-based targeting strategy applied by current industry practices and targeting strategies based on alternative customer segmentation models such as k -means or the myopic hidden Markov model. Overall, the novel feature of our paper is its proposal of a new personalized-targeting approach combining the FHMM with a field experiment to tackle the challenge of low engagement with mobile apps.

Suggested Citation

  • Yingjie Zhang & Beibei Li & Xueming Luo & Xiaoyi Wang, 2019. "Personalized Mobile Targeting with User Engagement Stages: Combining a Structural Hidden Markov Model and Field Experiment," Information Systems Research, INFORMS, vol. 30(3), pages 787-804, September.
  • Handle: RePEc:inm:orisre:v:30:y:2019:i:3:p:787-804
    DOI: 10.1287/isre.2018.0831
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/isre.2018.0831
    Download Restriction: no

    File URL: https://libkey.io/10.1287/isre.2018.0831?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    2. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    3. Sergio Firpo, 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
    4. Oded Netzer & James M. Lattin & V. Srinivasan, 2008. "A Hidden Markov Model of Customer Relationship Dynamics," Marketing Science, INFORMS, vol. 27(2), pages 185-204, 03-04.
    5. V. Joseph Hotz & Robert A. Miller & Seth Sanders & Jeffrey Smith, 1994. "A Simulation Estimator for Dynamic Models of Discrete Choice," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 265-289.
    6. Thierry Magnac & David Thesmar, 2002. "Identifying Dynamic Discrete Decision Processes," Econometrica, Econometric Society, vol. 70(2), pages 801-816, March.
    7. Alan L. Montgomery & Shibo Li & Kannan Srinivasan & John C. Liechty, 2004. "Modeling Online Browsing and Path Analysis Using Clickstream Data," Marketing Science, INFORMS, vol. 23(4), pages 579-595, November.
    8. Ben Shiller, 2016. "Personalized Price Discrimination Using Big Data," Working Papers 108, Brandeis University, Department of Economics and International Business School.
    9. Anindya Ghose & Sang Pil Han, 2014. "Estimating Demand for Mobile Applications in the New Economy," Management Science, INFORMS, vol. 60(6), pages 1470-1488, June.
    10. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    11. Vidyanand Choudhary, 2010. "Use of Pricing Schemes for Differentiating Information Goods," Information Systems Research, INFORMS, vol. 21(1), pages 78-92, March.
    12. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    13. Vidyanand Choudhary & Anindya Ghose & Tridas Mukhopadhyay & Uday Rajan, 2005. "Personalized Pricing and Quality Differentiation," Management Science, INFORMS, vol. 51(7), pages 1120-1130, July.
    14. V. Kumar & S. Sriram & Anita Luo & Pradeep K. Chintagunta, 2011. "Assessing the Effect of Marketing Investments in a Business Marketing Context," Marketing Science, INFORMS, vol. 30(5), pages 924-940, September.
    15. Kaiquan Xu & Jason Chan & Anindya Ghose & Sang Pil Han, 2017. "Battle of the Channels: The Impact of Tablets on Digital Commerce," Management Science, INFORMS, vol. 63(5), pages 1469-1492, May.
    16. Miller, Robert A, 1984. "Job Matching and Occupational Choice," Journal of Political Economy, University of Chicago Press, vol. 92(6), pages 1086-1120, December.
    17. Eva Ascarza & Bruce G. S. Hardie, 2013. "A Joint Model of Usage and Churn in Contractual Settings," Marketing Science, INFORMS, vol. 32(4), pages 570-590, July.
    18. Victor Aguirregabiria & Pedro Mira, 2007. "Sequential Estimation of Dynamic Discrete Games," Econometrica, Econometric Society, vol. 75(1), pages 1-53, January.
    19. Hyeokkoo Eric Kwon & Hyunji So & Sang Pil Han & Wonseok Oh, 2016. "Excessive Dependence on Mobile Social Apps: A Rational Addiction Perspective," Information Systems Research, INFORMS, vol. 27(4), pages 919-939, December.
    20. Chenxi Li & Xueming Luo & Cheng Zhang, 2017. "Sunny, Rainy, and Cloudy with a Chance of Mobile Promotion Effectiveness," Marketing Science, INFORMS, vol. 36(5), pages 762-779, September.
    21. Peter Arcidiacono & Robert A. Miller, 2011. "Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 79(6), pages 1823-1867, November.
    22. Liangfei Qiu & Subodha Kumar, 2017. "Understanding Voluntary Knowledge Provision and Content Contribution Through a Social-Media-Based Prediction Market: A Field Experiment," Information Systems Research, INFORMS, vol. 28(3), pages 529-546, September.
    23. Yannis Bakos & Erik Brynjolfsson, 1999. "Bundling Information Goods: Pricing, Profits, and Efficiency," Management Science, INFORMS, vol. 45(12), pages 1613-1630, December.
    24. Yan Huang & Param Vir Singh & Anindya Ghose, 2015. "A Structural Model of Employee Behavioral Dynamics in Enterprise Social Media," Management Science, INFORMS, vol. 61(12), pages 2825-2844, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wan, Qin & Yang, Shilei & Shi, Victor & Qiu, Martin, 2021. "Optimal strategies of mobile targeting promotion under competition," International Journal of Production Economics, Elsevier, vol. 237(C).
    2. Jing Peng, 2023. "Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis," Information Systems Research, INFORMS, vol. 34(1), pages 67-84, March.
    3. Ni Huang & Gordon Burtch & Yumei He & Yili Hong, 2022. "Managing Congestion in a Matching Market via Demand Information Disclosure," Information Systems Research, INFORMS, vol. 33(4), pages 1196-1220, December.
    4. Yan Leng & Xiaowen Dong & Esteban Moro & Alex Pentland, 2024. "Long-Range Social Influence in Phone Communication Networks on Offline Adoption Decisions," Information Systems Research, INFORMS, vol. 35(1), pages 318-338, March.
    5. Ryo Kato & Takahiro Hoshino & Daisuke Moriwaki & Shintaro Okazaki, 2022. "Mobile Targeting: Exploring the Role of Area Familiarity, Store Knowledge, and Promotional Incentives," Discussion Paper Series DP2022-10, Research Institute for Economics & Business Administration, Kobe University.
    6. Ni Huang & Probal Mojumder & Tianshu Sun & Jinchi Lv & Joseph M. Golden, 2021. "Not Registered? Please Sign Up First: A Randomized Field Experiment on the Ex Ante Registration Request," Information Systems Research, INFORMS, vol. 32(3), pages 914-931, September.
    7. Zhuojun Gu & Ravi Bapna & Jason Chan & Alok Gupta, 2022. "Measuring the Impact of Crowdsourcing Features on Mobile App User Engagement and Retention: A Randomized Field Experiment," Management Science, INFORMS, vol. 68(2), pages 1297-1329, February.
    8. Shaohui Wu & Yong Tan & Yubo Chen & Yitian (Sky) Liang, 2022. "How Is Mobile User Behavior Different? A Hidden Markov Model of Cross-Mobile Application Usage Dynamics," Information Systems Research, INFORMS, vol. 33(3), pages 1002-1022, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu Yingyao & Shum Matthew & Tan Wei & Xiao Ruli, 2017. "A Simple Estimator for Dynamic Models with Serially Correlated Unobservables," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-16, January.
    2. Aguirregabiria, Victor & Gu, Jiaying & Luo, Yao, 2021. "Sufficient statistics for unobserved heterogeneity in structural dynamic logit models," Journal of Econometrics, Elsevier, vol. 223(2), pages 280-311.
    3. Kappe, Eelco & Stadler Blank, Ashley & DeSarbo, Wayne S., 2018. "A random coefficients mixture hidden Markov model for marketing research," International Journal of Research in Marketing, Elsevier, vol. 35(3), pages 415-431.
    4. Hanming Fang & Yang Wang, 2015. "Estimating Dynamic Discrete Choice Models With Hyperbolic Discounting, With An Application To Mammography Decisions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(2), pages 565-596, May.
    5. Arcidiacono, Peter & Miller, Robert A., 2020. "Identifying dynamic discrete choice models off short panels," Journal of Econometrics, Elsevier, vol. 215(2), pages 473-485.
    6. Hu, Yingyao, 2017. "The Econometrics of Unobservables -- Latent Variable and Measurement Error Models and Their Applications in Empirical Industrial Organization and Labor Economics [The Econometrics of Unobservables]," Economics Working Paper Archive 64578, The Johns Hopkins University,Department of Economics, revised 2021.
    7. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    8. Komarova, Tatiana & Sanches, Fábio Adriano & Silva Junior, Daniel & Srisuma, Sorawoot, 2018. "Joint analysis of the discount factor and payoff parameters in dynamic discrete choice games," LSE Research Online Documents on Economics 86858, London School of Economics and Political Science, LSE Library.
    9. Sasaki, Yuya & Takahashi, Yuya & Xin, Yi & Hu, Yingyao, 2023. "Dynamic discrete choice models with incomplete data: Sharp identification," Journal of Econometrics, Elsevier, vol. 236(1).
    10. Shunyuan Zhang & Param Vir Singh & Anindya Ghose, 2019. "A Structural Analysis of the Role of Superstars in Crowdsourcing Contests," Service Science, INFORMS, vol. 30(1), pages 15-33, March.
    11. Kalouptsidi, Myrto & Scott, Paul T. & Souza-Rodrigues, Eduardo, 2021. "Linear IV regression estimators for structural dynamic discrete choice models," Journal of Econometrics, Elsevier, vol. 222(1), pages 778-804.
    12. repec:spo:wpmain:info:hdl:2441/7svo6civd6959qvmn4965cth1d is not listed on IDEAS
    13. Hu, Yingyao & Shum, Matthew, 2012. "Nonparametric identification of dynamic models with unobserved state variables," Journal of Econometrics, Elsevier, vol. 171(1), pages 32-44.
    14. Khai Chiong & Alfred Galichon & Matt Shum, 2015. "Duality in Dynamic Discrete Choice Models," SciencePo Working papers Main hal-03568184, HAL.
    15. Hu, Yingyao & Xin, Yi, 2024. "Identification and estimation of dynamic structural models with unobserved choices," Journal of Econometrics, Elsevier, vol. 242(2).
    16. Khai Xiang Chiong & Alfred Galichon & Matt Shum, 2021. "Duality in dynamic discrete-choice models," Papers 2102.06076, arXiv.org, revised Feb 2021.
    17. Gallant, A. Ronald & Hong, Han & Khwaja, Ahmed, 2018. "A Bayesian approach to estimation of dynamic models with small and large number of heterogeneous players and latent serially correlated states," Journal of Econometrics, Elsevier, vol. 203(1), pages 19-32.
    18. Khai Chiong & Alfred Galichon & Matt Shum, 2015. "Duality in Dynamic Discrete Choice Models," SciencePo Working papers hal-03568184, HAL.
    19. Sebastian Galiani & Juan Pantano, 2021. "Structural Models: Inception and Frontier," NBER Working Papers 28698, National Bureau of Economic Research, Inc.
    20. Armstrong, Timothy B. & Bertanha, Marinho & Hong, Han, 2014. "A fast resample method for parametric and semiparametric models," Journal of Econometrics, Elsevier, vol. 179(2), pages 128-133.
    21. Khai Chiong & Alfred Galichon & Matt Shum, 2015. "Duality in Dynamic Discrete Choice Models," Post-Print hal-03568184, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orisre:v:30:y:2019:i:3:p:787-804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.