IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v36y2024i4p1040-1063.html
   My bibliography  Save this article

Polyhedral Relaxations for Optimal Pump Scheduling of Potable Water Distribution Networks

Author

Listed:
  • Byron Tasseff

    (Los Alamos National Laboratory, Los Alamos, New Mexico 87545)

  • Russell Bent

    (Los Alamos National Laboratory, Los Alamos, New Mexico 87545)

  • Carleton Coffrin

    (Los Alamos National Laboratory, Los Alamos, New Mexico 87545)

  • Clayton Barrows

    (National Renewable Energy Laboratory, Golden, Colorado 80401)

  • Devon Sigler

    (National Renewable Energy Laboratory, Golden, Colorado 80401)

  • Jonathan Stickel

    (National Renewable Energy Laboratory, Golden, Colorado 80401)

  • Ahmed S. Zamzam

    (National Renewable Energy Laboratory, Golden, Colorado 80401)

  • Yang Liu

    (Stanford University, Stanford, California 94305)

  • Pascal Van Hentenryck

    (Georgia Institute of Technology, Atlanta, Georgia 30332)

Abstract

The classic pump scheduling or optimal water flow (OWF) problem for water distribution networks (WDNs) minimizes the cost of power consumption for a given WDN over a fixed time horizon. In its exact form, the OWF is a computationally challenging mixed-integer nonlinear program (MINLP). It is complicated by nonlinear equality constraints that model network physics, discrete variables that model operational controls, and intertemporal constraints that model changes to storage devices. To address the computational challenges of the OWF, this paper develops tight polyhedral relaxations of the original MINLP, derives novel valid inequalities (or cuts) using duality theory, and implements novel optimization-based bound tightening and cut generation procedures. The efficacy of each new method is rigorously evaluated by measuring empirical improvements in OWF primal and dual bounds over 45 literature instances. The evaluation suggests that our relaxation improvements, model strengthening techniques, and a thoughtfully selected polyhedral relaxation partitioning scheme can substantially improve OWF primal and dual bounds, especially when compared with similar relaxation-based techniques that do not leverage these new methods.

Suggested Citation

  • Byron Tasseff & Russell Bent & Carleton Coffrin & Clayton Barrows & Devon Sigler & Jonathan Stickel & Ahmed S. Zamzam & Yang Liu & Pascal Van Hentenryck, 2024. "Polyhedral Relaxations for Optimal Pump Scheduling of Potable Water Distribution Networks," INFORMS Journal on Computing, INFORMS, vol. 36(4), pages 1040-1063, July.
  • Handle: RePEc:inm:orijoc:v:36:y:2024:i:4:p:1040-1063
    DOI: 10.1287/ijoc.2022.0233
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2022.0233
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2022.0233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luis Henrique Magalhães Costa & Bruno Prata & Helena M. Ramos & Marco Aurélio Holanda Castro, 2016. "A Branch-and-Bound Algorithm for Optimal Pump Scheduling in Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1037-1052, February.
    2. Ghaddar, Bissan & Naoum-Sawaya, Joe & Kishimoto, Akihiro & Taheri, Nicole & Eck, Bradley, 2015. "A Lagrangian decomposition approach for the pump scheduling problem in water networks," European Journal of Operational Research, Elsevier, vol. 241(2), pages 490-501.
    3. Ambros M. Gleixner & Timo Berthold & Benjamin Müller & Stefan Weltge, 2017. "Three enhancements for optimization-based bound tightening," Journal of Global Optimization, Springer, vol. 67(4), pages 731-757, April.
    4. M. Collins & L. Cooper & R. Helgason & J. Kennington & L. LeBlanc, 1978. "Solving the Pipe Network Analysis Problem Using Optimization Techniques," Management Science, INFORMS, vol. 24(7), pages 747-760, March.
    5. LEE, Jon & WILSON, Dan, 2001. "Polyhedral methods for piecewise-linear functions I: the lambda method," LIDAM Reprints CORE 1493, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Vieira, Bruno S. & Mayerle, Sérgio F. & Campos, Lucila M.S. & Coelho, Leandro C., 2020. "Optimizing drinking water distribution system operations," European Journal of Operational Research, Elsevier, vol. 280(3), pages 1035-1050.
    7. Naoum-Sawaya, Joe & Ghaddar, Bissan & Arandia, Ernesto & Eck, Bradley, 2015. "Simulation-optimization approaches for water pump scheduling and pipe replacement problems," European Journal of Operational Research, Elsevier, vol. 246(1), pages 293-306.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghaddar, Bissan & Claeys, Mathieu & Mevissen, Martin & Eck, Bradley J., 2017. "Polynomial optimization for water networks: Global solutions for the valve setting problem," European Journal of Operational Research, Elsevier, vol. 261(2), pages 450-459.
    2. Xiaoli Feng & Baoyun Qiu & Yongxing Wang, 2020. "Optimizing Parallel Pumping Station Operations in an Open-Channel Water Transfer System Using an Efficient Hybrid Algorithm," Energies, MDPI, vol. 13(18), pages 1-19, September.
    3. Selek, István & Ikonen, Enso, 2019. "Role of specific energy in decomposition of time-invariant least-cost reservoir filling problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 565-573.
    4. Bonvin, Gratien & Demassey, Sophie & Le Pape, Claude & Maïzi, Nadia & Mazauric, Vincent & Samperio, Alfredo, 2017. "A convex mathematical program for pump scheduling in a class of branched water networks," Applied Energy, Elsevier, vol. 185(P2), pages 1702-1711.
    5. Shao, Yu & Zhou, Xinhong & Yu, Tingchao & Zhang, Tuqiao & Chu, Shipeng, 2024. "Pump scheduling optimization in water distribution system based on mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1140-1151.
    6. D’Ambrosio, Claudia & Lodi, Andrea & Wiese, Sven & Bragalli, Cristiana, 2015. "Mathematical programming techniques in water network optimization," European Journal of Operational Research, Elsevier, vol. 243(3), pages 774-788.
    7. Lars Schewe & Martin Schmidt & Johannes Thürauf, 2020. "Computing technical capacities in the European entry-exit gas market is NP-hard," Annals of Operations Research, Springer, vol. 295(1), pages 337-362, December.
    8. Jon Lee & Daphne Skipper & Emily Speakman & Luze Xu, 2023. "Gaining or Losing Perspective for Piecewise-Linear Under-Estimators of Convex Univariate Functions," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 1-35, January.
    9. Brais González-Rodríguez & Joaquín Ossorio-Castillo & Julio González-Díaz & Ángel M. González-Rueda & David R. Penas & Diego Rodríguez-Martínez, 2023. "Computational advances in polynomial optimization: RAPOSa, a freely available global solver," Journal of Global Optimization, Springer, vol. 85(3), pages 541-568, March.
    10. Bohong Wang & Yongtu Liang & Wei Zhao & Yun Shen & Meng Yuan & Zhimin Li & Jian Guo, 2021. "A Continuous Pump Location Optimization Method for Water Pipe Network Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 447-464, January.
    11. Jaromił Najman & Dominik Bongartz & Alexander Mitsos, 2021. "Linearization of McCormick relaxations and hybridization with the auxiliary variable method," Journal of Global Optimization, Springer, vol. 80(4), pages 731-756, August.
    12. Brkic, Dejan, 2009. "An improvement of Hardy Cross method applied on looped spatial natural gas distribution networks," Applied Energy, Elsevier, vol. 86(7-8), pages 1290-1300, July.
    13. Hong, Sung-Pil & Kim, Taegyoon & Lee, Subin, 2019. "A precision pump schedule optimization for the water supply networks with small buffers," Omega, Elsevier, vol. 82(C), pages 24-37.
    14. J. David Allen & Richard V. Helgason & Jeffery L. Kennington, 1987. "The frequency assignment problem: A solution via nonlinear programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(1), pages 133-139, February.
    15. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    16. Fränk Plein & Johannes Thürauf & Martine Labbé & Martin Schmidt, 2022. "A bilevel optimization approach to decide the feasibility of bookings in the European gas market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(3), pages 409-449, June.
    17. Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
    18. Przemysław Średziński & Martyna Świętochowska & Kamil Świętochowski & Joanna Gwoździej-Mazur, 2022. "Analysis of the Use of the PV Installation in the Power Supply of the Water Pumping Station," Energies, MDPI, vol. 15(24), pages 1-13, December.
    19. Nerantzis, Dimitrios & Pecci, Filippo & Stoianov, Ivan, 2020. "Optimal control of water distribution networks without storage," European Journal of Operational Research, Elsevier, vol. 284(1), pages 345-354.
    20. Benjamin Beach & Robert Hildebrand & Joey Huchette, 2022. "Compact mixed-integer programming formulations in quadratic optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 869-912, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:36:y:2024:i:4:p:1040-1063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.