IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v24y1978i7p747-760.html
   My bibliography  Save this article

Solving the Pipe Network Analysis Problem Using Optimization Techniques

Author

Listed:
  • M. Collins

    (Southern Methodist University)

  • L. Cooper

    (Southern Methodist University)

  • R. Helgason

    (Southern Methodist University)

  • J. Kennington

    (Southern Methodist University)

  • L. LeBlanc

    (Southern Methodist University)

Abstract

For more than forty years, approximate solutions for the classical pipe network analysis problem have been obtained by direct solution of the nonlinear stationary point conditions. We propose a revolutionary new approach involving optimization techniques for solving this well-known engineering problem. It is shown that the pipe network analysis problem may be described mathematically in terms of a nonlinear convex cost network flow problem. Three mathematical programming algorithms for solving this problem have been coded and are computationally compared with a code using the traditional Newton-Raphson technique. The computational experience demonstrates that this new approach provides an attractive alternative for solving this important problem.

Suggested Citation

  • M. Collins & L. Cooper & R. Helgason & J. Kennington & L. LeBlanc, 1978. "Solving the Pipe Network Analysis Problem Using Optimization Techniques," Management Science, INFORMS, vol. 24(7), pages 747-760, March.
  • Handle: RePEc:inm:ormnsc:v:24:y:1978:i:7:p:747-760
    DOI: 10.1287/mnsc.24.7.747
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.24.7.747
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.24.7.747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antoine Gautier & Frieda Granot, 1996. "Ripples, complements, and substitutes in generalized networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(1), pages 1-21, February.
    2. Lars Schewe & Martin Schmidt & Johannes Thürauf, 2020. "Computing technical capacities in the European entry-exit gas market is NP-hard," Annals of Operations Research, Springer, vol. 295(1), pages 337-362, December.
    3. Lonnie Turpin & Barron Brown, 2021. "On Reworks in a Serial Process with Flexible Windows of Time," SN Operations Research Forum, Springer, vol. 2(2), pages 1-13, June.
    4. Lars Schewe & Martin Schmidt & Johannes Thürauf, 2022. "Global optimization for the multilevel European gas market system with nonlinear flow models on trees," Journal of Global Optimization, Springer, vol. 82(3), pages 627-653, March.
    5. Ralf Lenz & Kai Helge Becker, 2022. "Optimization of capacity expansion in potential-driven networks including multiple looping: a comparison of modelling approaches," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 179-224, March.
    6. D’Ambrosio, Claudia & Lodi, Andrea & Wiese, Sven & Bragalli, Cristiana, 2015. "Mathematical programming techniques in water network optimization," European Journal of Operational Research, Elsevier, vol. 243(3), pages 774-788.
    7. Marins, Fernando A. S. & Senne, Edson L. F. & Darby-Dowman, Ken & Machado, Arlene F. & Perin, Clovis, 1997. "Algorithms for network piecewise-linear programs: A comparative study," European Journal of Operational Research, Elsevier, vol. 97(1), pages 183-199, February.
    8. Martin Robinius & Lars Schewe & Martin Schmidt & Detlef Stolten & Johannes Thürauf & Lara Welder, 2019. "Robust optimal discrete arc sizing for tree-shaped potential networks," Computational Optimization and Applications, Springer, vol. 73(3), pages 791-819, July.
    9. Jesco Humpola & Armin Fügenschuh, 2015. "Convex reformulations for solving a nonlinear network design problem," Computational Optimization and Applications, Springer, vol. 62(3), pages 717-759, December.
    10. Brkic, Dejan, 2009. "An improvement of Hardy Cross method applied on looped spatial natural gas distribution networks," Applied Energy, Elsevier, vol. 86(7-8), pages 1290-1300, July.
    11. Spyros Kontogiorgis, 2000. "Practical Piecewise-Linear Approximation for Monotropic Optimization," INFORMS Journal on Computing, INFORMS, vol. 12(4), pages 324-340, November.
    12. Hong, Sung-Pil & Kim, Taegyoon & Lee, Subin, 2019. "A precision pump schedule optimization for the water supply networks with small buffers," Omega, Elsevier, vol. 82(C), pages 24-37.
    13. J. David Allen & Richard V. Helgason & Jeffery L. Kennington, 1987. "The frequency assignment problem: A solution via nonlinear programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(1), pages 133-139, February.
    14. Fränk Plein & Johannes Thürauf & Martine Labbé & Martin Schmidt, 2022. "A bilevel optimization approach to decide the feasibility of bookings in the European gas market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(3), pages 409-449, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:24:y:1978:i:7:p:747-760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.