IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4626-d409510.html
   My bibliography  Save this article

Optimizing Parallel Pumping Station Operations in an Open-Channel Water Transfer System Using an Efficient Hybrid Algorithm

Author

Listed:
  • Xiaoli Feng

    (School of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China)

  • Baoyun Qiu

    (School of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China)

  • Yongxing Wang

    (School of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China)

Abstract

This article presents a methodology for optimizing the operation of parallel pumping stations in an open-channel water transfer system. A mathematical model was established for the minimum power with constraints on water level, flow rate and pump unit performance, and related factors. In the objective function, energy consumption of relevant equipment or facilities, such as main pump units, power transmission and transformation equipment, and auxiliary equipment, was considered comprehensively. The model was decomposed to two layers for solving. In the first layer, by using discharge distribution ratio as a variable, the flow rate and water level of the two water channels could be determined by employing the dichotomy approach (DA), and were calculated according to the principle of energy conservation, considering energy loss caused by hydraulic leakage and evaporation losses. In the second layer, the number of running pumps and the flow rate of a single pump were obtained by simulated annealing–particle swarm optimization (SA–PSO). The hybrid of the two algorithms is called the dichotomy approach–simulated annealing–particle swarm optimization (DA–SA–PSO). To verify the efficiency and validity of DA–SA–PSO, SA–PSO is also applied to determine discharge distribution ratio. The results indicate that the computation time using DA–SA–PSO is 1/30 of that using double-layer SA–PSO (dSA–PSO). Compared with the original plan, the optimal solution could result in power savings of 14–35%. Thus, the DA–SA–PSO is highly efficient for optimizing system operation in real time.

Suggested Citation

  • Xiaoli Feng & Baoyun Qiu & Yongxing Wang, 2020. "Optimizing Parallel Pumping Station Operations in an Open-Channel Water Transfer System Using an Efficient Hybrid Algorithm," Energies, MDPI, vol. 13(18), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4626-:d:409510
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4626/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4626/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhuan, Xiangtao & Xia, Xiaohua, 2013. "Optimal operation scheduling of a pumping station with multiple pumps," Applied Energy, Elsevier, vol. 104(C), pages 250-257.
    2. Luca O. Turci & Jingcheng Wang & Ibrahim Brahmia, 2020. "Adaptive and Improved Multi-population Based Nature-inspired Optimization Algorithms for Water Pump Station Scheduling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2869-2885, July.
    3. Zhang, Zijun & Kusiak, Andrew & Zeng, Yaohui & Wei, Xiupeng, 2016. "Modeling and optimization of a wastewater pumping system with data-mining methods," Applied Energy, Elsevier, vol. 164(C), pages 303-311.
    4. Naoum-Sawaya, Joe & Ghaddar, Bissan & Arandia, Ernesto & Eck, Bradley, 2015. "Simulation-optimization approaches for water pump scheduling and pipe replacement problems," European Journal of Operational Research, Elsevier, vol. 246(1), pages 293-306.
    5. Olszewski, Pawel, 2016. "Genetic optimization and experimental verification of complex parallel pumping station with centrifugal pumps," Applied Energy, Elsevier, vol. 178(C), pages 527-539.
    6. Ghaddar, Bissan & Naoum-Sawaya, Joe & Kishimoto, Akihiro & Taheri, Nicole & Eck, Bradley, 2015. "A Lagrangian decomposition approach for the pump scheduling problem in water networks," European Journal of Operational Research, Elsevier, vol. 241(2), pages 490-501.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gencho Popov & Stanislaw Legutko & Kliment Klimentov & Boris Kostov, 2021. "Applying Criteria Equations in Studying the Energy Efficiency of Pump Systems," Energies, MDPI, vol. 14(17), pages 1-13, August.
    2. Przemysław Średziński & Martyna Świętochowska & Kamil Świętochowski & Joanna Gwoździej-Mazur, 2022. "Analysis of the Use of the PV Installation in the Power Supply of the Water Pumping Station," Energies, MDPI, vol. 15(24), pages 1-13, December.
    3. Manickavel Baranidharan & Rassiah Raja Singh, 2022. "AI Energy Optimal Strategy on Variable Speed Drives for Multi-Parallel Aqua Pumping System," Energies, MDPI, vol. 15(12), pages 1-29, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torregrossa, Dario & Hansen, Joachim & Hernández-Sancho, Francesc & Cornelissen, Alex & Schutz, Georges & Leopold, Ulrich, 2017. "A data-driven methodology to support pump performance analysis and energy efficiency optimization in Waste Water Treatment Plants," Applied Energy, Elsevier, vol. 208(C), pages 1430-1440.
    2. Ghaddar, Bissan & Claeys, Mathieu & Mevissen, Martin & Eck, Bradley J., 2017. "Polynomial optimization for water networks: Global solutions for the valve setting problem," European Journal of Operational Research, Elsevier, vol. 261(2), pages 450-459.
    3. Filipe, Jorge & Bessa, Ricardo J. & Reis, Marisa & Alves, Rita & Póvoa, Pedro, 2019. "Data-driven predictive energy optimization in a wastewater pumping station," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Leandro Alves Evangelista & Gustavo Meirelles & Bruno Brentan, 2023. "Computational Model of Water Distribution Network Life Cycle Deterioration," Sustainability, MDPI, vol. 15(19), pages 1-14, October.
    5. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    6. Selek, István & Ikonen, Enso, 2019. "Role of specific energy in decomposition of time-invariant least-cost reservoir filling problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 565-573.
    7. Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2016. "Model predictive control strategy of energy-water management in urban households," Applied Energy, Elsevier, vol. 179(C), pages 821-831.
    8. Bonvin, Gratien & Demassey, Sophie & Le Pape, Claude & Maïzi, Nadia & Mazauric, Vincent & Samperio, Alfredo, 2017. "A convex mathematical program for pump scheduling in a class of branched water networks," Applied Energy, Elsevier, vol. 185(P2), pages 1702-1711.
    9. Olszewski, Pawel & Arafeh, Jamal, 2018. "Parametric analysis of pumping station with parallel-configured centrifugal pumps towards self-learning applications," Applied Energy, Elsevier, vol. 231(C), pages 1146-1158.
    10. Johnson, Hilary A. & Simon, Kevin P. & Slocum, Alexander H., 2021. "Data analytics and pump control in a wastewater treatment plant," Applied Energy, Elsevier, vol. 299(C).
    11. Bohong Wang & Yongtu Liang & Wei Zhao & Yun Shen & Meng Yuan & Zhimin Li & Jian Guo, 2021. "A Continuous Pump Location Optimization Method for Water Pipe Network Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 447-464, January.
    12. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.
    13. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    14. Du Plessis, Gideon Edgar & Liebenberg, Leon & Mathews, Edward Henry, 2013. "The use of variable speed drives for cost-effective energy savings in South African mine cooling systems," Applied Energy, Elsevier, vol. 111(C), pages 16-27.
    15. Oreste Fecarotta & Armando Carravetta & Maria Cristina Morani & Roberta Padulano, 2018. "Optimal Pump Scheduling for Urban Drainage under Variable Flow Conditions," Resources, MDPI, vol. 7(4), pages 1-20, November.
    16. Safarbek Oshurbekov & Vadim Kazakbaev & Vladimir Prakht & Vladimir Dmitrievskii, 2021. "Improving Reliability and Energy Efficiency of Three Parallel Pumps by Selecting Trade-Off Operating Points," Mathematics, MDPI, vol. 9(11), pages 1-19, June.
    17. Panagiotis Karadimos & Leonidas Anthopoulos, 2023. "Machine Learning-Based Energy Consumption Estimation of Wastewater Treatment Plants in Greece," Energies, MDPI, vol. 16(21), pages 1-20, November.
    18. Wanjiru, Evan M. & Sichilalu, Sam M. & Xia, Xiaohua, 2017. "Model predictive control of heat pump water heater-instantaneous shower powered with integrated renewable-grid energy systems," Applied Energy, Elsevier, vol. 204(C), pages 1333-1346.
    19. Zong Woo Geem & Jin-Hong Kim, 2016. "Sustainable Optimization for Wastewater Treatment System Using PSF-HS," Sustainability, MDPI, vol. 8(4), pages 1-13, March.
    20. Baoqing Wang & Kun Chen & Cheng Huang & Jinrui Zhao & Yaotong Zhang & Dequan Li & Lin Wang, 2022. "Research on Operation Optimization of LNG Submerged Pump System in LNG Receiving Terminals," Energies, MDPI, vol. 15(9), pages 1-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4626-:d:409510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.