IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i3p1711-1728.html
   My bibliography  Save this article

Posterior-Based Stopping Rules for Bayesian Ranking-and-Selection Procedures

Author

Listed:
  • David J. Eckman

    (Wm Michael Barnes ’64 Department of Industrial and Systems Engineering, Texas A&M University, College Station, Texas 77843)

  • Shane G. Henderson

    (School of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853)

Abstract

Sequential ranking-and-selection procedures deliver Bayesian guarantees by repeatedly computing a posterior quantity of interest—for example, the posterior probability of good selection or the posterior expected opportunity cost—and terminating when this quantity crosses some threshold. Computing these posterior quantities entails nontrivial numerical computation. Thus, rather than exactly check such posterior-based stopping rules, it is common practice to use cheaply computable bounds on the posterior quantity of interest, for example, those based on Bonferroni’s or Slepian’s inequalities. The result is a conservative procedure that samples more simulation replications than are necessary. We explore how the time spent simulating these additional replications might be better spent computing the posterior quantity of interest via numerical integration, with the potential for terminating the procedure sooner. To this end, we develop several methods for improving the computational efficiency of exactly checking the stopping rules. Simulation experiments demonstrate that the proposed methods can, in some instances, significantly reduce a procedure’s total sample size. We further show these savings can be attained with little added computational effort by making effective use of a Monte Carlo estimate of the posterior quantity of interest. Summary of Contribution: The widespread use of commercial simulation software in industry has made ranking-and-selection (R&S) algorithms an accessible simulation-optimization tool for operations research practitioners. This paper addresses computational aspects of R&S procedures delivering finite-time Bayesian statistical guarantees, primarily the decision of when to terminate sampling. Checking stopping rules entails computing or approximating posterior quantities of interest perceived as being computationally intensive to evaluate. The main results of this paper show that these quantities can be efficiently computed via numerical integration and can yield substantial savings in sampling relative to the prevailing approach of using conservative bounds. In addition to enhancing the performance of Bayesian R&S procedures, the results have the potential to advance other research in this space, including the development of more efficient allocation rules.

Suggested Citation

  • David J. Eckman & Shane G. Henderson, 2022. "Posterior-Based Stopping Rules for Bayesian Ranking-and-Selection Procedures," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1711-1728, May.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:3:p:1711-1728
    DOI: 10.1287/ijoc.2021.1132
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.1132
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.1132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eric C. Ni & Dragos F. Ciocan & Shane G. Henderson & Susan R. Hunter, 2017. "Efficient Ranking and Selection in Parallel Computing Environments," Operations Research, INFORMS, vol. 65(3), pages 821-836, June.
    2. Peter Frazier & Warren Powell & Savas Dayanik, 2009. "The Knowledge-Gradient Policy for Correlated Normal Beliefs," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 599-613, November.
    3. Jing Xie & Peter I. Frazier & Stephen E. Chick, 2016. "Bayesian Optimization via Simulation with Pairwise Sampling and Correlated Prior Beliefs," Operations Research, INFORMS, vol. 64(2), pages 542-559, April.
    4. Chun-Hung Chen & Stephen E. Chick & Loo Hay Lee & Nugroho A. Pujowidianto, 2015. "Ranking and Selection: Efficient Simulation Budget Allocation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 45-80, Springer.
    5. Nanjing Jian & Shane G. Henderson, 2020. "Estimating the Probability that a Function Observed with Noise Is Convex," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 376-389, April.
    6. Jun Luo & L. Jeff Hong & Barry L. Nelson & Yang Wu, 2015. "Fully Sequential Procedures for Large-Scale Ranking-and-Selection Problems in Parallel Computing Environments," Operations Research, INFORMS, vol. 63(5), pages 1177-1194, October.
    7. Daniel Russo, 2020. "Simple Bayesian Algorithms for Best-Arm Identification," Operations Research, INFORMS, vol. 68(6), pages 1625-1647, November.
    8. Yijie Peng & Chun-Hung Chen & Michael C. Fu & Jian-Qiang Hu, 2016. "Dynamic Sampling Allocation and Design Selection," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 195-208, May.
    9. Stephen E. Chick & Jürgen Branke & Christian Schmidt, 2010. "Sequential Sampling to Myopically Maximize the Expected Value of Information," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 71-80, February.
    10. L. Jeff Hong & Barry L. Nelson & Jie Xu, 2015. "Discrete Optimization via Simulation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 9-44, Springer.
    11. Pichitlamken, Juta & Nelson, Barry L. & Hong, L. Jeff, 2006. "A sequential procedure for neighborhood selection-of-the-best in optimization via simulation," European Journal of Operational Research, Elsevier, vol. 173(1), pages 283-298, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongshun Shi & Yijie Peng & Leyuan Shi & Chun-Hung Chen & Michael C. Fu, 2022. "Dynamic Sampling Allocation Under Finite Simulation Budget for Feasibility Determination," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 557-568, January.
    2. Saeid Delshad & Amin Khademi, 2020. "Information theory for ranking and selection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(4), pages 239-253, June.
    3. Ying Zhong & Shaoxuan Liu & Jun Luo & L. Jeff Hong, 2022. "Speeding Up Paulson’s Procedure for Large-Scale Problems Using Parallel Computing," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 586-606, January.
    4. Daniel Russo, 2020. "Simple Bayesian Algorithms for Best-Arm Identification," Operations Research, INFORMS, vol. 68(6), pages 1625-1647, November.
    5. Weiwei Fan & L. Jeff Hong & Xiaowei Zhang, 2020. "Distributionally Robust Selection of the Best," Management Science, INFORMS, vol. 66(1), pages 190-208, January.
    6. Haihui Shen & L. Jeff Hong & Xiaowei Zhang, 2021. "Ranking and Selection with Covariates for Personalized Decision Making," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1500-1519, October.
    7. Gongbo Zhang & Yijie Peng & Jianghua Zhang & Enlu Zhou, 2023. "Asymptotically Optimal Sampling Policy for Selecting Top- m Alternatives," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1261-1285, November.
    8. L. Jeff Hong & Guangxin Jiang & Ying Zhong, 2022. "Solving Large-Scale Fixed-Budget Ranking and Selection Problems," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2930-2949, November.
    9. Eric C. Ni & Dragos F. Ciocan & Shane G. Henderson & Susan R. Hunter, 2017. "Efficient Ranking and Selection in Parallel Computing Environments," Operations Research, INFORMS, vol. 65(3), pages 821-836, June.
    10. Stephen E. Chick & Noah Gans & Özge Yapar, 2022. "Bayesian Sequential Learning for Clinical Trials of Multiple Correlated Medical Interventions," Management Science, INFORMS, vol. 68(7), pages 4919-4938, July.
    11. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    12. Ye Chen & Ilya O. Ryzhov, 2023. "Balancing Optimal Large Deviations in Sequential Selection," Management Science, INFORMS, vol. 69(6), pages 3457-3473, June.
    13. Mark Semelhago & Barry L. Nelson & Eunhye Song & Andreas Wächter, 2021. "Rapid Discrete Optimization via Simulation with Gaussian Markov Random Fields," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 915-930, July.
    14. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    15. Taylor, Simon J.E., 2019. "Distributed simulation: state-of-the-art and potential for operational research," European Journal of Operational Research, Elsevier, vol. 273(1), pages 1-19.
    16. Diana M. Negoescu & Peter I. Frazier & Warren B. Powell, 2011. "The Knowledge-Gradient Algorithm for Sequencing Experiments in Drug Discovery," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 346-363, August.
    17. Michael Macgregor Perry & Hadi El-Amine, 2021. "Computational Efficiency in Multivariate Adversarial Risk Analysis Models," Papers 2110.12572, arXiv.org.
    18. Huashuai Qu & Ilya O. Ryzhov & Michael C. Fu & Zi Ding, 2015. "Sequential Selection with Unknown Correlation Structures," Operations Research, INFORMS, vol. 63(4), pages 931-948, August.
    19. Ilya O. Ryzhov, 2016. "On the Convergence Rates of Expected Improvement Methods," Operations Research, INFORMS, vol. 64(6), pages 1515-1528, December.
    20. Zhou, Tianli & Fields, Evan & Osorio, Carolina, 2023. "A data-driven discrete simulation-based optimization algorithm for car-sharing service design," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:3:p:1711-1728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.