IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i1p557-568.html
   My bibliography  Save this article

Dynamic Sampling Allocation Under Finite Simulation Budget for Feasibility Determination

Author

Listed:
  • Zhongshun Shi

    (Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, Tennessee 37996)

  • Yijie Peng

    (Department of Management Science and Information Systems, Guanghua School of Management, Peking University, Beijing100871, China)

  • Leyuan Shi

    (Department of Industrial and Systems Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53705)

  • Chun-Hung Chen

    (Department of Systems Engineering and Operations Research, George Mason University, Fairfax, Virginia 22030)

  • Michael C. Fu

    (The Robert H. Smith School of Business, Institute for Systems Research, University of Maryland, College Park, Maryland 20742)

Abstract

Monte Carlo simulation is a commonly used tool for evaluating the performance of complex stochastic systems. In practice, simulation can be expensive, especially when comparing a large number of alternatives, thus motivating the need to intelligently allocate simulation replications. Given a finite set of alternatives whose means are estimated via simulation, we consider the problem of determining the subset of alternatives that have means smaller than a fixed threshold. A dynamic sampling procedure that possesses not only asymptotic optimality, but also desirable finite-sample properties is proposed. Theoretical results show that there is a significant difference between finite-sample optimality and asymptotic optimality. Numerical experiments substantiate the effectiveness of the new method. Summary of Contribution: Simulation is an important tool to estimate the performance of complex stochastic systems. We consider a feasibility determination problem of identifying all those among a finite set of alternatives with mean smaller than a given threshold, in which the means are unknown but can be estimated by sampling replications via stochastic simulation. This problem appears widely in many applications, including call center design and hospital resource allocation. Our work considers how to intelligently allocate simulation replications to different alternatives for efficiently finding the feasible alternatives. Previous work focuses on the asymptotic properties of the sampling allocation procedures, whereas our contribution lies in developing a finite-budget allocation rule that possesses both asymptotic optimality and desirable finite-budget properties.

Suggested Citation

  • Zhongshun Shi & Yijie Peng & Leyuan Shi & Chun-Hung Chen & Michael C. Fu, 2022. "Dynamic Sampling Allocation Under Finite Simulation Budget for Feasibility Determination," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 557-568, January.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:557-568
    DOI: 10.1287/ijoc.2020.1057
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2020.1057
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2020.1057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eric C. Ni & Dragos F. Ciocan & Shane G. Henderson & Susan R. Hunter, 2017. "Efficient Ranking and Selection in Parallel Computing Environments," Operations Research, INFORMS, vol. 65(3), pages 821-836, June.
    2. L. Jeff Hong & Jun Luo & Barry L. Nelson, 2015. "Chance Constrained Selection of the Best," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 317-334, May.
    3. Jing Xie & Peter I. Frazier & Stephen E. Chick, 2016. "Bayesian Optimization via Simulation with Pairwise Sampling and Correlated Prior Beliefs," Operations Research, INFORMS, vol. 64(2), pages 542-559, April.
    4. Batur, D. & Choobineh, F., 2010. "A quantile-based approach to system selection," European Journal of Operational Research, Elsevier, vol. 202(3), pages 764-772, May.
    5. Jing Xie & Peter I. Frazier, 2013. "Sequential Bayes-Optimal Policies for Multiple Comparisons with a Known Standard," Operations Research, INFORMS, vol. 61(5), pages 1174-1189, October.
    6. Barry L. Nelson & David Goldsman, 2001. "Comparisons with a Standard in Simulation Experiments," Management Science, INFORMS, vol. 47(3), pages 449-463, March.
    7. Jun Luo & L. Jeff Hong & Barry L. Nelson & Yang Wu, 2015. "Fully Sequential Procedures for Large-Scale Ranking-and-Selection Problems in Parallel Computing Environments," Operations Research, INFORMS, vol. 63(5), pages 1177-1194, October.
    8. Yijie Peng & Chun-Hung Chen & Michael C. Fu & Jian-Qiang Hu & Ilya O. Ryzhov, 2021. "Efficient Sampling Allocation Procedures for Optimal Quantile Selection," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 230-245, January.
    9. Sigrún Andradóttir & Seong‐Hee Kim, 2010. "Fully sequential procedures for comparing constrained systems via simulation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(5), pages 403-421, August.
    10. Ilya O. Ryzhov, 2016. "On the Convergence Rates of Expected Improvement Methods," Operations Research, INFORMS, vol. 64(6), pages 1515-1528, December.
    11. Yijie Peng & Chun-Hung Chen & Michael C. Fu & Jian-Qiang Hu, 2016. "Dynamic Sampling Allocation and Design Selection," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 195-208, May.
    12. Susan R. Hunter & Raghu Pasupathy, 2013. "Optimal Sampling Laws for Stochastically Constrained Simulation Optimization on Finite Sets," INFORMS Journal on Computing, INFORMS, vol. 25(3), pages 527-542, August.
    13. Peter I. Frazier, 2014. "A Fully Sequential Elimination Procedure for Indifference-Zone Ranking and Selection with Tight Bounds on Probability of Correct Selection," Operations Research, INFORMS, vol. 62(4), pages 926-942, August.
    14. Stephen E. Chick & Jürgen Branke & Christian Schmidt, 2010. "Sequential Sampling to Myopically Maximize the Expected Value of Information," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 71-80, February.
    15. Stephen E. Chick & Koichiro Inoue, 2001. "New Two-Stage and Sequential Procedures for Selecting the Best Simulated System," Operations Research, INFORMS, vol. 49(5), pages 732-743, October.
    16. Chun-Hung Chen & Donghai He & Michael Fu & Loo Hay Lee, 2008. "Efficient Simulation Budget Allocation for Selecting an Optimal Subset," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 579-595, November.
    17. Siyang Gao & Weiwei Chen & Leyuan Shi, 2017. "A New Budget Allocation Framework for the Expected Opportunity Cost," Operations Research, INFORMS, vol. 65(3), pages 787-803, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Russo, 2020. "Simple Bayesian Algorithms for Best-Arm Identification," Operations Research, INFORMS, vol. 68(6), pages 1625-1647, November.
    2. Gongbo Zhang & Yijie Peng & Jianghua Zhang & Enlu Zhou, 2023. "Asymptotically Optimal Sampling Policy for Selecting Top- m Alternatives," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1261-1285, November.
    3. Zhongshun Shi & Siyang Gao & Hui Xiao & Weiwei Chen, 2019. "A worst‐case formulation for constrained ranking and selection with input uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 648-662, December.
    4. Saeid Delshad & Amin Khademi, 2020. "Information theory for ranking and selection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(4), pages 239-253, June.
    5. Juergen Branke & Wen Zhang, 2019. "Identifying efficient solutions via simulation: myopic multi-objective budget allocation for the bi-objective case," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 831-865, September.
    6. L. Jeff Hong & Guangxin Jiang & Ying Zhong, 2022. "Solving Large-Scale Fixed-Budget Ranking and Selection Problems," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2930-2949, November.
    7. David J. Eckman & Shane G. Henderson, 2022. "Posterior-Based Stopping Rules for Bayesian Ranking-and-Selection Procedures," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1711-1728, May.
    8. Weiwei Chen & Siyang Gao & Wenjie Chen & Jianzhong Du, 2023. "Optimizing resource allocation in service systems via simulation: A Bayesian formulation," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 65-81, January.
    9. Haihui Shen & L. Jeff Hong & Xiaowei Zhang, 2021. "Ranking and Selection with Covariates for Personalized Decision Making," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1500-1519, October.
    10. Cheng Li & Siyang Gao & Jianzhong Du, 2023. "Convergence Analysis of Stochastic Kriging-Assisted Simulation with Random Covariates," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 386-402, March.
    11. Demet Batur & Lina Wang & F. Fred Choobineh, 2018. "Methods for System Selection Based on Sequential Mean–Variance Analysis," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 724-738, November.
    12. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    13. Yijie Peng & Chun-Hung Chen & Michael C. Fu & Jian-Qiang Hu & Ilya O. Ryzhov, 2021. "Efficient Sampling Allocation Procedures for Optimal Quantile Selection," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 230-245, January.
    14. Ruijing Wu & Shaoxuan Liu & Zhenyang Shi, 2019. "Customer Incentive Rebalancing Plan in Free-Float Bike-Sharing System with Limited Information," Sustainability, MDPI, vol. 11(11), pages 1-24, May.
    15. Ye Chen & Ilya O. Ryzhov, 2023. "Balancing Optimal Large Deviations in Sequential Selection," Management Science, INFORMS, vol. 69(6), pages 3457-3473, June.
    16. Cheng, Zhenxia & Luo, Jun & Wu, Ruijing, 2023. "On the finite-sample statistical validity of adaptive fully sequential procedures," European Journal of Operational Research, Elsevier, vol. 307(1), pages 266-278.
    17. Yuwei Zhou & Sigrún Andradóttir & Seong-Hee Kim & Chuljin Park, 2022. "Finding Feasible Systems for Subjective Constraints Using Recycled Observations," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3080-3095, November.
    18. Weiwei Fan & L. Jeff Hong & Xiaowei Zhang, 2020. "Distributionally Robust Selection of the Best," Management Science, INFORMS, vol. 66(1), pages 190-208, January.
    19. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    20. L. Jeff Hong & Jun Luo & Barry L. Nelson, 2015. "Chance Constrained Selection of the Best," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 317-334, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:557-568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.