IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v320y2025i3p628-641.html
   My bibliography  Save this article

Reference alternatives based knockout-tournament procedure for ranking and selection

Author

Listed:
  • Zhong, Ying
  • Du, Jianzhong
  • Li, Deng-Feng
  • Hu, Zhaolin

Abstract

The knockout-tournament (KT) procedure is an efficient parallel procedure recently developed to solve large-scale ranking and selection (R&S) problems. The procedure adopts a selection structure which is commonly used in many sports tournaments, and eliminates alternatives by conducting “matches” between paired alternatives round-by-round. In this paper, to further improve the procedure’s performance in solving large-scale problems, we propose a major modification of the procedure. Specifically, in each round of the selection, before pairing the surviving alternatives and conducting the matches, we first choose an alternative as the reference alternative and then add the reference alternative to each match. We call the new procedure Procedure i-KT, where i-KT stands for “improved knockout-tournament”. We show that by carefully choosing the reference alternative and designing the pairing scheme for the remaining surviving alternatives in each round of the selection, Procedure i-KT can achieve significant improvements on both the average sample size required in each match and the total number of matches required during the entire selection process. In the meantime, we demonstrate that after the modifications, Procedure i-KT still fits parallel computing environments well. We compare Procedure i-KT with various procedures on different test examples and numerically justify our theoretical analysis.

Suggested Citation

  • Zhong, Ying & Du, Jianzhong & Li, Deng-Feng & Hu, Zhaolin, 2025. "Reference alternatives based knockout-tournament procedure for ranking and selection," European Journal of Operational Research, Elsevier, vol. 320(3), pages 628-641.
  • Handle: RePEc:eee:ejores:v:320:y:2025:i:3:p:628-641
    DOI: 10.1016/j.ejor.2024.08.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172400688X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.08.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ying Zhong & Shaoxuan Liu & Jun Luo & L. Jeff Hong, 2022. "Speeding Up Paulson’s Procedure for Large-Scale Problems Using Parallel Computing," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 586-606, January.
    2. Lee, Mi Lim & Park, Chuljin & Park, Dong Uk, 2018. "Self-adjusting the tolerance level in a fully sequential feasibility check procedure," European Journal of Operational Research, Elsevier, vol. 271(2), pages 733-745.
    3. Yoon, Moonyoung & Bekker, James, 2019. "Considering sample means in Rinott’s procedure with a Bayesian approach," European Journal of Operational Research, Elsevier, vol. 273(1), pages 249-258.
    4. Weiwei Fan & L. Jeff Hong & Barry L. Nelson, 2016. "Indifference-Zone-Free Selection of the Best," Operations Research, INFORMS, vol. 64(6), pages 1499-1514, December.
    5. Jun Luo & L. Jeff Hong & Barry L. Nelson & Yang Wu, 2015. "Fully Sequential Procedures for Large-Scale Ranking-and-Selection Problems in Parallel Computing Environments," Operations Research, INFORMS, vol. 63(5), pages 1177-1194, October.
    6. Eric C. Ni & Dragos F. Ciocan & Shane G. Henderson & Susan R. Hunter, 2017. "Efficient Ranking and Selection in Parallel Computing Environments," Operations Research, INFORMS, vol. 65(3), pages 821-836, June.
    7. Chun-Hung Chen & Stephen E. Chick & Loo Hay Lee & Nugroho A. Pujowidianto, 2015. "Ranking and Selection: Efficient Simulation Budget Allocation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 45-80, Springer.
    8. Seong-Hee Kim & Barry L. Nelson, 2006. "On the Asymptotic Validity of Fully Sequential Selection Procedures for Steady-State Simulation," Operations Research, INFORMS, vol. 54(3), pages 475-488, June.
    9. Cheng, Zhenxia & Luo, Jun & Wu, Ruijing, 2023. "On the finite-sample statistical validity of adaptive fully sequential procedures," European Journal of Operational Research, Elsevier, vol. 307(1), pages 266-278.
    10. Groves, Matthew & Branke, Juergen, 2019. "Top-κ selection with pairwise comparisons," European Journal of Operational Research, Elsevier, vol. 274(2), pages 615-626.
    11. Stephen E. Chick & Koichiro Inoue, 2001. "New Two-Stage and Sequential Procedures for Selecting the Best Simulated System," Operations Research, INFORMS, vol. 49(5), pages 732-743, October.
    12. L. Jeff Hong, 2006. "Fully sequential indifference‐zone selection procedures with variance‐dependent sampling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(5), pages 464-476, August.
    13. Peter I. Frazier, 2014. "A Fully Sequential Elimination Procedure for Indifference-Zone Ranking and Selection with Tight Bounds on Probability of Correct Selection," Operations Research, INFORMS, vol. 62(4), pages 926-942, August.
    14. Andradóttir, Sigrún & Lee, Judy S., 2021. "Pareto set estimation with guaranteed probability of correct selection," European Journal of Operational Research, Elsevier, vol. 292(1), pages 286-298.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haihui Shen & L. Jeff Hong & Xiaowei Zhang, 2021. "Ranking and Selection with Covariates for Personalized Decision Making," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1500-1519, October.
    2. Daniel Russo, 2020. "Simple Bayesian Algorithms for Best-Arm Identification," Operations Research, INFORMS, vol. 68(6), pages 1625-1647, November.
    3. L. Jeff Hong & Guangxin Jiang & Ying Zhong, 2022. "Solving Large-Scale Fixed-Budget Ranking and Selection Problems," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2930-2949, November.
    4. Demet Batur & F. Fred Choobineh, 2021. "Selecting the Best Alternative Based on Its Quantile," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 657-671, May.
    5. Zhongshun Shi & Yijie Peng & Leyuan Shi & Chun-Hung Chen & Michael C. Fu, 2022. "Dynamic Sampling Allocation Under Finite Simulation Budget for Feasibility Determination," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 557-568, January.
    6. Cheng, Zhenxia & Luo, Jun & Wu, Ruijing, 2023. "On the finite-sample statistical validity of adaptive fully sequential procedures," European Journal of Operational Research, Elsevier, vol. 307(1), pages 266-278.
    7. Ying Zhong & Shaoxuan Liu & Jun Luo & L. Jeff Hong, 2022. "Speeding Up Paulson’s Procedure for Large-Scale Problems Using Parallel Computing," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 586-606, January.
    8. Shing Chih Tsai & Jun Luo & Chi Ching Sung, 2017. "Combined variance reduction techniques in fully sequential selection procedures," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(6), pages 502-527, September.
    9. Weiwei Fan & L. Jeff Hong & Xiaowei Zhang, 2020. "Distributionally Robust Selection of the Best," Management Science, INFORMS, vol. 66(1), pages 190-208, January.
    10. David J. Eckman & Shane G. Henderson, 2022. "Posterior-Based Stopping Rules for Bayesian Ranking-and-Selection Procedures," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1711-1728, May.
    11. Ye Chen & Ilya O. Ryzhov, 2023. "Balancing Optimal Large Deviations in Sequential Selection," Management Science, INFORMS, vol. 69(6), pages 3457-3473, June.
    12. Weiwei Fan & L. Jeff Hong & Barry L. Nelson, 2016. "Indifference-Zone-Free Selection of the Best," Operations Research, INFORMS, vol. 64(6), pages 1499-1514, December.
    13. Eric C. Ni & Dragos F. Ciocan & Shane G. Henderson & Susan R. Hunter, 2017. "Efficient Ranking and Selection in Parallel Computing Environments," Operations Research, INFORMS, vol. 65(3), pages 821-836, June.
    14. Saeid Delshad & Amin Khademi, 2020. "Information theory for ranking and selection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(4), pages 239-253, June.
    15. Demet Batur & Lina Wang & F. Fred Choobineh, 2018. "Methods for System Selection Based on Sequential Mean–Variance Analysis," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 724-738, November.
    16. Wang, Tianxiang & Xu, Jie & Hu, Jian-Qiang & Chen, Chun-Hung, 2023. "Efficient estimation of a risk measure requiring two-stage simulation optimization," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1355-1365.
    17. Taylor, Simon J.E., 2019. "Distributed simulation: state-of-the-art and potential for operational research," European Journal of Operational Research, Elsevier, vol. 273(1), pages 1-19.
    18. Juergen Branke & Wen Zhang, 2019. "Identifying efficient solutions via simulation: myopic multi-objective budget allocation for the bi-objective case," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 831-865, September.
    19. Gongbo Zhang & Yijie Peng & Jianghua Zhang & Enlu Zhou, 2023. "Asymptotically Optimal Sampling Policy for Selecting Top- m Alternatives," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1261-1285, November.
    20. Huang, Hao & Tsai, Shing Chih & Park, Chuljin, 2025. "Probabilistic branch and bound considering stochastic constraints," European Journal of Operational Research, Elsevier, vol. 321(1), pages 147-159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:320:y:2025:i:3:p:628-641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.