IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4939-1384-8_3.html
   My bibliography  Save this book chapter

Ranking and Selection: Efficient Simulation Budget Allocation

In: Handbook of Simulation Optimization

Author

Listed:
  • Chun-Hung Chen

    (George Mason University)

  • Stephen E. Chick

    (INSEAD)

  • Loo Hay Lee

    (National University of Singapore)

  • Nugroho A. Pujowidianto

    (Hewlett-Packard Singapore)

Abstract

This chapter reviews the problem of selecting the best of a finite set of alternatives, where best is defined with respect to the highest mean performance, and where the performance is uncertain but may be estimated with simulation. This problem has been explored from several perspectives, including statistical ranking and selection, multiple comparisons, and stochastic optimization. Approaches taken in the literature include frequentist statistics, Bayesian statistics, related heuristics, and asymptotic convergence in probability. This chapter presents algorithms that are derived from Bayesian and related conceptual frameworks to provide empirically effective performance for the ranking and selection problem. In particular, we motivate the optimal computing budget allocation (OCBA) algorithm and expected value of information (EVI) approaches, give example algorithms, and provide pointers to the literature for detailed derivations and extensions of these approaches.

Suggested Citation

  • Chun-Hung Chen & Stephen E. Chick & Loo Hay Lee & Nugroho A. Pujowidianto, 2015. "Ranking and Selection: Efficient Simulation Budget Allocation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 45-80, Springer.
  • Handle: RePEc:spr:isochp:978-1-4939-1384-8_3
    DOI: 10.1007/978-1-4939-1384-8_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric C. Ni & Dragos F. Ciocan & Shane G. Henderson & Susan R. Hunter, 2017. "Efficient Ranking and Selection in Parallel Computing Environments," Operations Research, INFORMS, vol. 65(3), pages 821-836, June.
    2. Huashuai Qu & Ilya O. Ryzhov & Michael C. Fu & Eric Bergerson & Megan Kurka & Ludek Kopacek, 2020. "Learning Demand Curves in B2B Pricing: A New Framework and Case Study," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1287-1306, May.
    3. Ilya O. Ryzhov, 2016. "On the Convergence Rates of Expected Improvement Methods," Operations Research, INFORMS, vol. 64(6), pages 1515-1528, December.
    4. Demet Batur & F. Fred Choobineh, 2021. "Selecting the Best Alternative Based on Its Quantile," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 657-671, May.
    5. David J. Eckman & Shane G. Henderson, 2022. "Posterior-Based Stopping Rules for Bayesian Ranking-and-Selection Procedures," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1711-1728, May.
    6. Mohammad H. Almomani & Mahmoud H. Alrefaei, 2016. "Ordinal Optimization with Computing Budget Allocation for Selecting an Optimal Subset," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(02), pages 1-17, April.
    7. Ye Chen & Ilya O. Ryzhov, 2020. "Technical Note—Consistency Analysis of Sequential Learning Under Approximate Bayesian Inference," Operations Research, INFORMS, vol. 68(1), pages 295-307, January.
    8. Ying Zhong & Shaoxuan Liu & Jun Luo & L. Jeff Hong, 2022. "Speeding Up Paulson’s Procedure for Large-Scale Problems Using Parallel Computing," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 586-606, January.
    9. Ye Chen & Ilya O. Ryzhov, 2023. "Balancing Optimal Large Deviations in Sequential Selection," Management Science, INFORMS, vol. 69(6), pages 3457-3473, June.
    10. Daniel Russo, 2020. "Simple Bayesian Algorithms for Best-Arm Identification," Operations Research, INFORMS, vol. 68(6), pages 1625-1647, November.
    11. Haihui Shen & L. Jeff Hong & Xiaowei Zhang, 2021. "Ranking and Selection with Covariates for Personalized Decision Making," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1500-1519, October.
    12. Ahn, Dohyun, 2024. "Data-driven resource allocation for multi-target attainment," European Journal of Operational Research, Elsevier, vol. 318(3), pages 954-965.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4939-1384-8_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.