Rapid Discrete Optimization via Simulation with Gaussian Markov Random Fields
Author
Abstract
Suggested Citation
DOI: 10.1287/ijoc.2020.0971
Download full text from publisher
References listed on IDEAS
- Jing Xie & Peter I. Frazier & Stephen E. Chick, 2016. "Bayesian Optimization via Simulation with Pairwise Sampling and Correlated Prior Beliefs," Operations Research, INFORMS, vol. 64(2), pages 542-559, April.
- Peter Salemi, 2019. "First-order intrinsic Gaussian Markov random fields for discrete optimisation via simulation," Journal of Simulation, Taylor & Francis Journals, vol. 13(4), pages 272-285, October.
- Lihua Sun & L. Jeff Hong & Zhaolin Hu, 2014. "Balancing Exploitation and Exploration in Discrete Optimization via Simulation Through a Gaussian Process-Based Search," Operations Research, INFORMS, vol. 62(6), pages 1416-1438, December.
- Peter Frazier & Warren Powell & Savas Dayanik, 2009. "The Knowledge-Gradient Policy for Correlated Normal Beliefs," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 599-613, November.
- Peter L. Salemi & Eunhye Song & Barry L. Nelson & Jeremy Staum, 2019. "Gaussian Markov Random Fields for Discrete Optimization via Simulation: Framework and Algorithms," Operations Research, INFORMS, vol. 67(1), pages 250-266, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, Tianli & Fields, Evan & Osorio, Carolina, 2023. "A data-driven discrete simulation-based optimization algorithm for car-sharing service design," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
- David J. Eckman & Shane G. Henderson, 2022. "Posterior-Based Stopping Rules for Bayesian Ranking-and-Selection Procedures," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1711-1728, May.
- Stephen E. Chick & Noah Gans & Özge Yapar, 2022. "Bayesian Sequential Learning for Clinical Trials of Multiple Correlated Medical Interventions," Management Science, INFORMS, vol. 68(7), pages 4919-4938, July.
- Deniz Preil & Michael Krapp, 2023. "Genetic multi-armed bandits: a reinforcement learning approach for discrete optimization via simulation," Papers 2302.07695, arXiv.org.
- Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
- Jalali, Hamed & Van Nieuwenhuyse, Inneke & Picheny, Victor, 2017. "Comparison of Kriging-based algorithms for simulation optimization with heterogeneous noise," European Journal of Operational Research, Elsevier, vol. 261(1), pages 279-301.
- Peter L. Salemi & Eunhye Song & Barry L. Nelson & Jeremy Staum, 2019. "Gaussian Markov Random Fields for Discrete Optimization via Simulation: Framework and Algorithms," Operations Research, INFORMS, vol. 67(1), pages 250-266, January.
- Tay, Timothy & Osorio, Carolina, 2022. "Bayesian optimization techniques for high-dimensional simulation-based transportation problems," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 210-243.
- Jialei Wang & Scott C. Clark & Eric Liu & Peter I. Frazier, 2020. "Parallel Bayesian Global Optimization of Expensive Functions," Operations Research, INFORMS, vol. 68(6), pages 1850-1865, November.
- Qun Meng & Songhao Wang & Szu Hui Ng, 2022. "Combined Global and Local Search for Optimization with Gaussian Process Models," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 622-637, January.
- Seokhyun Chung & Raed Al Kontar & Zhenke Wu, 2022. "Weakly Supervised Multi-output Regression via Correlated Gaussian Processes," INFORMS Joural on Data Science, INFORMS, vol. 1(2), pages 115-137, October.
- Weiwei Fan & L. Jeff Hong & Xiaowei Zhang, 2020. "Distributionally Robust Selection of the Best," Management Science, INFORMS, vol. 66(1), pages 190-208, January.
- Emre Barut & Warren Powell, 2014. "Optimal learning for sequential sampling with non-parametric beliefs," Journal of Global Optimization, Springer, vol. 58(3), pages 517-543, March.
- Kamiński, Bogumił, 2015. "A method for the updating of stochastic kriging metamodels," European Journal of Operational Research, Elsevier, vol. 247(3), pages 859-866.
- Krityakierne, Tipaluck & Baowan, Duangkamon, 2020. "Aggregated GP-based Optimization for Contaminant Source Localization," Operations Research Perspectives, Elsevier, vol. 7(C).
- Diana M. Negoescu & Peter I. Frazier & Warren B. Powell, 2011. "The Knowledge-Gradient Algorithm for Sequencing Experiments in Drug Discovery," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 346-363, August.
- Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
- Kleijnen, Jack P.C. & van Beers, W.C.M. & van Nieuwenhuyse, I., 2011.
"Expected Improvement in Efficient Global Optimization Through Bootstrapped Kriging - Replaces CentER DP 2010-62,"
Discussion Paper
2011-015, Tilburg University, Center for Economic Research.
- Kleijnen, Jack P.C. & van Beers, W.C.M. & van Nieuwenhuyse, I., 2011. "Expected Improvement in Efficient Global Optimization Through Bootstrapped Kriging - Replaces CentER DP 2010-62," Other publications TiSEM d3b15c46-27c4-493e-8c53-9, Tilburg University, School of Economics and Management.
- J P C Kleijnen & W C M van Beers, 2013.
"Monotonicity-preserving bootstrapped Kriging metamodels for expensive simulations,"
Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(5), pages 708-717, May.
- Kleijnen, Jack P.C. & van Beers, W.C.M., 2009. "Monotonicity-Preserving Bootstrapped Kriging Metamodels for Expensive Simulations," Other publications TiSEM 59d5c29b-25a3-4af9-921f-b, Tilburg University, School of Economics and Management.
- Kleijnen, Jack P.C. & van Beers, W.C.M., 2013. "Monotonicity-preserving bootstrapped kriging metamodels for expensive simulations," Other publications TiSEM 6b0d8c68-19f5-485b-b3e2-9, Tilburg University, School of Economics and Management.
- Kleijnen, Jack P.C. & van Beers, W.C.M., 2009. "Monotonicity-Preserving Bootstrapped Kriging Metamodels for Expensive Simulations," Discussion Paper 2009-75, Tilburg University, Center for Economic Research.
- Kleijnen, J.P.C. & Mehdad, Ehsan, 2015.
"Estimating the Variance of the Predictor in Stochastic Kriging,"
Other publications TiSEM
dbbd2fa2-eccf-4f71-be9b-c, Tilburg University, School of Economics and Management.
- Kleijnen, J.P.C. & Mehdad, Ehsan, 2015. "Estimating the Variance of the Predictor in Stochastic Kriging," Discussion Paper 2015-041, Tilburg University, Center for Economic Research.
More about this item
Keywords
design of experiments; efficiency; statistical analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:33:y:2021:i:3:p:915-930. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.