IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i1p586-606.html
   My bibliography  Save this article

Speeding Up Paulson’s Procedure for Large-Scale Problems Using Parallel Computing

Author

Listed:
  • Ying Zhong

    (School of Management and Economics, University of Electronic Science and Technology of China, Chengdu, 611731 China)

  • Shaoxuan Liu

    (Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai, 200030 China)

  • Jun Luo

    (Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai, 200030 China)

  • L. Jeff Hong

    (School of Management and School of Data Science, Fudan University, Shanghai, 200433 China)

Abstract

With the rapid development of computing technology, using parallel computing to solve large-scale ranking-and-selection (R&S) problems has emerged as an important research topic. However, direct implementation of traditionally fully sequential procedures in parallel computing environments may encounter various problems. First, the scheme of all-pairwise comparisons, which is commonly used in fully sequential procedures, requires a large amount of computation and significantly slows down the selection process. Second, traditional fully sequential procedures require frequent communication and coordination among processors, which are also not efficient in parallel computing environments. In this paper, we propose three modifications on one classical fully sequential procedure, Paulson’s procedure, to speed up its selection process in parallel computing environments. First, we show that if no common random numbers are used, then we can significantly reduce the computation spent on all-pairwise comparisons at each round. Second, by batching different alternatives, we show that we can reduce the communication cost among the processors, leading the procedure to achieve better performance. Third, to boost the procedure’s final-stage selection, when the number of surviving alternatives is less than the number of processors, we suggest to sample all surviving alternatives to the maximal number of observations that they should take. We show that, after these modifications, the procedure remains statistically valid and is more efficient compared with existing parallel procedures in the literature. Summary of Contribution: Ranking and selection (R&S) is a branch of simulation optimization, which is an important area of operations research. In recent years, using parallel computing to solve large-scale R&S problems has emerged as an important research topic, and this research topic is naturally situated in the intersection of computing and operations research. In this paper, we consider how to improve a fully sequential R&S procedure, namely, Paulson’s procedure, to reduce the high computational complexity of all-pairwise comparisons and the burden of frequent communications and coordination, so that the procedure is more suitable and more efficient in solving large-scale R&S problems using parallel computing environments that are becoming ubiquitous and accessible for ordinary users. The procedure designed in this paper appears more efficient than the ones available in the literature and is capable of solving R&S problems with over a million alternatives in a parallel computing environment with 96 processors. The paper also extended the theory of R&S by showing that the all-pairwise comparisons may be decomposed so that the computational complexity may be reduced significantly, which drastically improves the efficiency of all-pairwise comparisons as observed in numerical experiments.

Suggested Citation

  • Ying Zhong & Shaoxuan Liu & Jun Luo & L. Jeff Hong, 2022. "Speeding Up Paulson’s Procedure for Large-Scale Problems Using Parallel Computing," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 586-606, January.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:586-606
    DOI: 10.1287/ijoc.2020.1054
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2020.1054
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2020.1054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eric C. Ni & Dragos F. Ciocan & Shane G. Henderson & Susan R. Hunter, 2017. "Efficient Ranking and Selection in Parallel Computing Environments," Operations Research, INFORMS, vol. 65(3), pages 821-836, June.
    2. Barry L. Nelson & Julie Swann & David Goldsman & Wheyming Song, 2001. "Simple Procedures for Selecting the Best Simulated System When the Number of Alternatives is Large," Operations Research, INFORMS, vol. 49(6), pages 950-963, December.
    3. Chun-Hung Chen & Stephen E. Chick & Loo Hay Lee & Nugroho A. Pujowidianto, 2015. "Ranking and Selection: Efficient Simulation Budget Allocation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 45-80, Springer.
    4. Jun Luo & L. Jeff Hong & Barry L. Nelson & Yang Wu, 2015. "Fully Sequential Procedures for Large-Scale Ranking-and-Selection Problems in Parallel Computing Environments," Operations Research, INFORMS, vol. 63(5), pages 1177-1194, October.
    5. L. Jeff Hong, 2006. "Fully sequential indifference‐zone selection procedures with variance‐dependent sampling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(5), pages 464-476, August.
    6. L. Jeff Hong & Barry L. Nelson & Jie Xu, 2015. "Discrete Optimization via Simulation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 9-44, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L. Jeff Hong & Guangxin Jiang & Ying Zhong, 2022. "Solving Large-Scale Fixed-Budget Ranking and Selection Problems," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2930-2949, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haihui Shen & L. Jeff Hong & Xiaowei Zhang, 2021. "Ranking and Selection with Covariates for Personalized Decision Making," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1500-1519, October.
    2. Eric C. Ni & Dragos F. Ciocan & Shane G. Henderson & Susan R. Hunter, 2017. "Efficient Ranking and Selection in Parallel Computing Environments," Operations Research, INFORMS, vol. 65(3), pages 821-836, June.
    3. David J. Eckman & Shane G. Henderson, 2022. "Posterior-Based Stopping Rules for Bayesian Ranking-and-Selection Procedures," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1711-1728, May.
    4. Daniel Russo, 2020. "Simple Bayesian Algorithms for Best-Arm Identification," Operations Research, INFORMS, vol. 68(6), pages 1625-1647, November.
    5. Taylor, Simon J.E., 2019. "Distributed simulation: state-of-the-art and potential for operational research," European Journal of Operational Research, Elsevier, vol. 273(1), pages 1-19.
    6. Saeid Delshad & Amin Khademi, 2020. "Information theory for ranking and selection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(4), pages 239-253, June.
    7. L. Jeff Hong & Guangxin Jiang & Ying Zhong, 2022. "Solving Large-Scale Fixed-Budget Ranking and Selection Problems," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2930-2949, November.
    8. Shing Chih Tsai & Chen Hao Kuo, 2012. "Screening and selection procedures with control variates and correlation induction techniques," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(5), pages 340-361, August.
    9. Jun Luo & L. Jeff Hong & Barry L. Nelson & Yang Wu, 2015. "Fully Sequential Procedures for Large-Scale Ranking-and-Selection Problems in Parallel Computing Environments," Operations Research, INFORMS, vol. 63(5), pages 1177-1194, October.
    10. L. Jeff Hong & Guangxin Jiang, 2019. "Offline Simulation Online Application: A New Framework of Simulation-Based Decision Making," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-22, December.
    11. Shing Chih Tsai, 2013. "Rapid Screening Procedures for Zero-One Optimization via Simulation," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 317-331, May.
    12. Zhongshun Shi & Yijie Peng & Leyuan Shi & Chun-Hung Chen & Michael C. Fu, 2022. "Dynamic Sampling Allocation Under Finite Simulation Budget for Feasibility Determination," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 557-568, January.
    13. Demet Batur & F. Fred Choobineh, 2021. "Selecting the Best Alternative Based on Its Quantile," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 657-671, May.
    14. Peter I. Frazier, 2014. "A Fully Sequential Elimination Procedure for Indifference-Zone Ranking and Selection with Tight Bounds on Probability of Correct Selection," Operations Research, INFORMS, vol. 62(4), pages 926-942, August.
    15. Shing Chih Tsai & Jun Luo & Chi Ching Sung, 2017. "Combined variance reduction techniques in fully sequential selection procedures," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(6), pages 502-527, September.
    16. Ruijing Wu & Shaoxuan Liu & Zhenyang Shi, 2019. "Customer Incentive Rebalancing Plan in Free-Float Bike-Sharing System with Limited Information," Sustainability, MDPI, vol. 11(11), pages 1-24, May.
    17. Cheng, Zhenxia & Luo, Jun & Wu, Ruijing, 2023. "On the finite-sample statistical validity of adaptive fully sequential procedures," European Journal of Operational Research, Elsevier, vol. 307(1), pages 266-278.
    18. Wang, Tianxiang & Xu, Jie & Hu, Jian-Qiang & Chen, Chun-Hung, 2023. "Efficient estimation of a risk measure requiring two-stage simulation optimization," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1355-1365.
    19. Preil, Deniz & Krapp, Michael, 2022. "Bandit-based inventory optimisation: Reinforcement learning in multi-echelon supply chains," International Journal of Production Economics, Elsevier, vol. 252(C).
    20. Weiwei Fan & L. Jeff Hong & Barry L. Nelson, 2016. "Indifference-Zone-Free Selection of the Best," Operations Research, INFORMS, vol. 64(6), pages 1499-1514, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:586-606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.