Convergence Analysis of Stochastic Kriging-Assisted Simulation with Random Covariates
Author
Abstract
Suggested Citation
DOI: 10.1287/ijoc.2022.1263
Download full text from publisher
References listed on IDEAS
- Eric C. Ni & Dragos F. Ciocan & Shane G. Henderson & Susan R. Hunter, 2017. "Efficient Ranking and Selection in Parallel Computing Environments," Operations Research, INFORMS, vol. 65(3), pages 821-836, June.
- Haihui Shen & L. Jeff Hong & Xiaowei Zhang, 2021. "Ranking and Selection with Covariates for Personalized Decision Making," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1500-1519, October.
- Bing Wang & Jiaqiao Hu, 2018. "Some Monotonicity Results for Stochastic Kriging Metamodels in Sequential Settings," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 278-294, May.
- Bruce Ankenman & Barry L. Nelson & Jeremy Staum, 2010. "Stochastic Kriging for Simulation Metamodeling," Operations Research, INFORMS, vol. 58(2), pages 371-382, April.
- Kleijnen, Jack P.C., 2009.
"Kriging metamodeling in simulation: A review,"
European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
- Kleijnen, J.P.C., 2007. "Kriging Metamodeling in Simulation : A Review," Other publications TiSEM 29d6926e-c381-4b58-ae58-8, Tilburg University, School of Economics and Management.
- Kleijnen, J.P.C., 2007. "Kriging Metamodeling in Simulation : A Review," Discussion Paper 2007-13, Tilburg University, Center for Economic Research.
- L. Jeff Hong & Guangxin Jiang, 2019. "Offline Simulation Online Application: A New Framework of Simulation-Based Decision Making," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-22, December.
- Ilya O. Ryzhov, 2016. "On the Convergence Rates of Expected Improvement Methods," Operations Research, INFORMS, vol. 64(6), pages 1515-1528, December.
- Chun-Hung Chen & Donghai He & Michael Fu & Loo Hay Lee, 2008. "Efficient Simulation Budget Allocation for Selecting an Optimal Subset," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 579-595, November.
- Siyang Gao & Weiwei Chen & Leyuan Shi, 2017. "A New Budget Allocation Framework for the Expected Opportunity Cost," Operations Research, INFORMS, vol. 65(3), pages 787-803, June.
- Xi Chen & Bruce E. Ankenman & Barry L. Nelson, 2013. "Enhancing Stochastic Kriging Metamodels with Gradient Estimators," Operations Research, INFORMS, vol. 61(2), pages 512-528, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhongshun Shi & Yijie Peng & Leyuan Shi & Chun-Hung Chen & Michael C. Fu, 2022. "Dynamic Sampling Allocation Under Finite Simulation Budget for Feasibility Determination," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 557-568, January.
- Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
- Xin Yun & L. Jeff Hong & Guangxin Jiang & Shouyang Wang, 2019. "On gamma estimation via matrix kriging," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(5), pages 393-410, August.
- L. Jeff Hong & Guangxin Jiang & Ying Zhong, 2022. "Solving Large-Scale Fixed-Budget Ranking and Selection Problems," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2930-2949, November.
- Daniel Russo, 2020. "Simple Bayesian Algorithms for Best-Arm Identification," Operations Research, INFORMS, vol. 68(6), pages 1625-1647, November.
- Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
- Mehdad, E. & Kleijnen, Jack P.C., 2014.
"Classic Kriging versus Kriging with Bootstrapping or Conditional Simulation : Classic Kriging's Robust Confidence Intervals and Optimization (Revised version of CentER DP 2013-038),"
Other publications TiSEM
4915047b-afe4-4fc7-8a1c-4, Tilburg University, School of Economics and Management.
- Mehdad, E. & Kleijnen, Jack P.C., 2014. "Classic Kriging versus Kriging with Bootstrapping or Conditional Simulation : Classic Kriging's Robust Confidence Intervals and Optimization (Revised version of CentER DP 2013-038)," Discussion Paper 2014-076, Tilburg University, Center for Economic Research.
- Xi Chen & Kyoung-Kuk Kim, 2016. "Efficient VaR and CVaR Measurement via Stochastic Kriging," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 629-644, November.
- Mike Ludkovski & Yuri Saporito, 2020. "KrigHedge: Gaussian Process Surrogates for Delta Hedging," Papers 2010.08407, arXiv.org, revised Jan 2022.
- Kleijnen, Jack P.C., 2017.
"Regression and Kriging metamodels with their experimental designs in simulation: A review,"
European Journal of Operational Research, Elsevier, vol. 256(1), pages 1-16.
- Kleijnen, J.P.C., 2015. "Regression and Kriging Metamodels with Their Experimental Designs in Simulation : Review," Other publications TiSEM c592e895-1656-43c3-8c7e-f, Tilburg University, School of Economics and Management.
- Kleijnen, J.P.C., 2015. "Regression and Kriging Metamodels with Their Experimental Designs in Simulation : Review," Discussion Paper 2015-035, Tilburg University, Center for Economic Research.
- J P C Kleijnen & W C M van Beers, 2013.
"Monotonicity-preserving bootstrapped Kriging metamodels for expensive simulations,"
Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(5), pages 708-717, May.
- Kleijnen, Jack P.C. & van Beers, W.C.M., 2009. "Monotonicity-Preserving Bootstrapped Kriging Metamodels for Expensive Simulations," Other publications TiSEM 59d5c29b-25a3-4af9-921f-b, Tilburg University, School of Economics and Management.
- Kleijnen, Jack P.C. & van Beers, W.C.M., 2013. "Monotonicity-preserving bootstrapped kriging metamodels for expensive simulations," Other publications TiSEM 6b0d8c68-19f5-485b-b3e2-9, Tilburg University, School of Economics and Management.
- Kleijnen, Jack P.C. & van Beers, W.C.M., 2009. "Monotonicity-Preserving Bootstrapped Kriging Metamodels for Expensive Simulations," Discussion Paper 2009-75, Tilburg University, Center for Economic Research.
- Zilong Wang & Marianthi Ierapetritou, 2018. "Surrogate-based feasibility analysis for black-box stochastic simulations with heteroscedastic noise," Journal of Global Optimization, Springer, vol. 71(4), pages 957-985, August.
- Gongbo Zhang & Yijie Peng & Jianghua Zhang & Enlu Zhou, 2023. "Asymptotically Optimal Sampling Policy for Selecting Top- m Alternatives," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1261-1285, November.
- Scott L. Rosen & Christopher P. Saunders & Samar K Guharay, 2015. "A Structured Approach for Rapidly Mapping Multilevel System Measures via Simulation Metamodeling," Systems Engineering, John Wiley & Sons, vol. 18(1), pages 87-101, January.
- Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
- Bing Wang & Jiaqiao Hu, 2018. "Some Monotonicity Results for Stochastic Kriging Metamodels in Sequential Settings," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 278-294, May.
- Chen, Xi & Zhou, Qiang, 2017. "Sequential design strategies for mean response surface metamodeling via stochastic kriging with adaptive exploration and exploitation," European Journal of Operational Research, Elsevier, vol. 262(2), pages 575-585.
- Kleijnen, Jack P.C., 2013.
"Simulation-Optimization via Kriging and Bootstrapping : A Survey (Revision of CentER DP 2011-064),"
Other publications TiSEM
6ac4e049-ad86-447f-aeec-a, Tilburg University, School of Economics and Management.
- Kleijnen, Jack P.C., 2013. "Simulation-Optimization via Kriging and Bootstrapping : A Survey (Revision of CentER DP 2011-064)," Discussion Paper 2013-064, Tilburg University, Center for Economic Research.
- Michael Ludkovski & James Risk, 2017. "Sequential Design and Spatial Modeling for Portfolio Tail Risk Measurement," Papers 1710.05204, arXiv.org, revised May 2018.
- Xiqun (Michael) Chen & Xiang He & Chenfeng Xiong & Zheng Zhu & Lei Zhang, 2019. "A Bayesian Stochastic Kriging Optimization Model Dealing with Heteroscedastic Simulation Noise for Freeway Traffic Management," Transportation Science, INFORMS, vol. 53(2), pages 545-565, March.
More about this item
Keywords
simulation with covariates; convergence rate; stochastic kriging; ranking and selection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:35:y:2023:i:2:p:386-402. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.