IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v311y2023i1p154-172.html
   My bibliography  Save this article

Solving a real-world multi-depot multi-period petrol replenishment problem with complex loading constraints

Author

Listed:
  • Bani, Abderrahman
  • El Hallaoui, Issmail
  • Corréa, Ayoub Insa
  • Tahir, Adil

Abstract

In this paper, we address a new variant of the petrol replenishment problem (PRP), which is a rich real-word multi-depot multi-period problem (MDMPPRP). We show that it is possible to solve this complex variant with an exact branch-and-price approach and some derived heuristics. On one side, this problem could be modeled as a set partitioning type problem with low to moderate density (the number of ones per column, i.e., clients to visit, is not large). Such problems have some nice polyhedral properties to consider for favoring integrality. In the other side, some complex handling rules apply due to the problem’s context. A natural way is to address them in the column generation subproblem as an elementary shortest path problem with resource constraints, which constitutes the major bottleneck. To succeed in this challenge, we need to design some sophisticated techniques i) for branching to profit from the polyhedral properties and ii) for solving the column generation subproblem. Direct use of on-the-shelf algorithms does not work, unfortunately. Numerical results on a real network (four depots, five types of petroleum products, four main groups of clients, heterogeneous fleet of highly compartmented tank trucks) prove the effectiveness and high potential of the proposed approach.

Suggested Citation

  • Bani, Abderrahman & El Hallaoui, Issmail & Corréa, Ayoub Insa & Tahir, Adil, 2023. "Solving a real-world multi-depot multi-period petrol replenishment problem with complex loading constraints," European Journal of Operational Research, Elsevier, vol. 311(1), pages 154-172.
  • Handle: RePEc:eee:ejores:v:311:y:2023:i:1:p:154-172
    DOI: 10.1016/j.ejor.2023.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723002989
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Bruggen, Lambert & Gruson, Ruud & Salomon, Marc, 1995. "Reconsidering the distribution structure of gasoline products for a large oil company," European Journal of Operational Research, Elsevier, vol. 81(3), pages 460-473, March.
    2. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    3. David Ronen, 1995. "Dispatching Petroleum Products," Operations Research, INFORMS, vol. 43(3), pages 379-387, June.
    4. Cornillier, Fabien & Boctor, Fayez & Renaud, Jacques, 2012. "Heuristics for the multi-depot petrol station replenishment problem with time windows," European Journal of Operational Research, Elsevier, vol. 220(2), pages 361-369.
    5. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    6. Stefan Irnich & Guy Desaulniers, 2005. "Shortest Path Problems with Resource Constraints," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 33-65, Springer.
    7. Gerald G. Brown & Carol J. Ellis & Glenn W. Graves & David Ronen, 1987. "Real-Time, Wide Area Dispatch of Mobil Tank Trucks," Interfaces, INFORMS, vol. 17(1), pages 107-120, February.
    8. Cornillier, Fabien & Boctor, Fayez F. & Laporte, Gilbert & Renaud, Jacques, 2008. "A heuristic for the multi-period petrol station replenishment problem," European Journal of Operational Research, Elsevier, vol. 191(2), pages 295-305, December.
    9. Vidović, Milorad & Popović, Dražen & Ratković, Branislava, 2014. "Mixed integer and heuristics model for the inventory routing problem in fuel delivery," International Journal of Production Economics, Elsevier, vol. 147(PC), pages 593-604.
    10. W L Ng & S C H Leung & J K P Lam & S W Pan, 2008. "Petrol delivery tanker assignment and routing: a case study in Hong Kong," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1191-1200, September.
    11. Avella, Pasquale & Boccia, Maurizio & Sforza, Antonio, 2004. "Solving a fuel delivery problem by heuristic and exact approaches," European Journal of Operational Research, Elsevier, vol. 152(1), pages 170-179, January.
    12. Moshe Dror, 1994. "Note on the Complexity of the Shortest Path Models for Column Generation in VRPTW," Operations Research, INFORMS, vol. 42(5), pages 977-978, October.
    13. Gerald G. Brown & Glenn W. Graves, 1981. "Real-Time Dispatch of Petroleum Tank Trucks," Management Science, INFORMS, vol. 27(1), pages 19-32, January.
    14. F Cornillier & F F Boctor & G Laporte & J Renaud, 2008. "An exact algorithm for the petrol station replenishment problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 607-615, May.
    15. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    16. Laporte, Gilbert, 1992. "The vehicle routing problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(3), pages 345-358, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ostermeier, Manuel & Henke, Tino & Hübner, Alexander & Wäscher, Gerhard, 2021. "Multi-compartment vehicle routing problems: State-of-the-art, modeling framework and future directions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 799-817.
    2. Samira Mirzaei & Sanne Wøhlk, 2019. "A Branch-and-Price algorithm for two multi-compartment vehicle routing problems," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(1), pages 1-33, March.
    3. Cornillier, Fabien & Boctor, Fayez & Renaud, Jacques, 2012. "Heuristics for the multi-depot petrol station replenishment problem with time windows," European Journal of Operational Research, Elsevier, vol. 220(2), pages 361-369.
    4. Samira Mirzaei & Sanne Wøhlk, 2017. "Erratum to: A Branch-and-Price algorithm for two multi-compartment vehicle routing problems," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 185-218, June.
    5. Furkan Uzar, M. & Çatay, Bülent, 2012. "Distribution planning of bulk lubricants at BP Turkey," Omega, Elsevier, vol. 40(6), pages 870-881.
    6. Yan Cheng Hsu & Jose L. Walteros & Rajan Batta, 2020. "Solving the petroleum replenishment and routing problem with variable demands and time windows," Annals of Operations Research, Springer, vol. 294(1), pages 9-46, November.
    7. Vasilii A. Gromov & Konstantin A. Kuznietzov & Timothy Pigden, 2019. "Decision support system for light petroleum products supply chain," Operational Research, Springer, vol. 19(1), pages 219-236, March.
    8. Gu, Wenjuan & Archetti, Claudia & Cattaruzza, Diego & Ogier, Maxime & Semet, Frédéric & Speranza, M. Grazia, 2024. "Vehicle routing problems with multiple commodities: A survey," European Journal of Operational Research, Elsevier, vol. 317(1), pages 1-15.
    9. Nasr Al-Hinai & Chefi Triki, 2020. "A two-level evolutionary algorithm for solving the petrol station replenishment problem with periodicity constraints and service choice," Annals of Operations Research, Springer, vol. 286(1), pages 325-350, March.
    10. Lahyani, Rahma & Coelho, Leandro C. & Khemakhem, Mahdi & Laporte, Gilbert & Semet, Frédéric, 2015. "A multi-compartment vehicle routing problem arising in the collection of olive oil in Tunisia," Omega, Elsevier, vol. 51(C), pages 1-10.
    11. Hiba Yahyaoui & Islem Kaabachi & Saoussen Krichen & Abdulkader Dekdouk, 2020. "Two metaheuristic approaches for solving the multi-compartment vehicle routing problem," Operational Research, Springer, vol. 20(4), pages 2085-2108, December.
    12. Lobo, Benjamin J. & Brown, Donald E. & Gerber, Matthew S. & Grazaitis, Peter J., 2018. "A transient stochastic simulation–optimization model for operational fuel planning in-theater," European Journal of Operational Research, Elsevier, vol. 264(2), pages 637-652.
    13. Henke, Tino & Speranza, M. Grazia & Wäscher, Gerhard, 2015. "The multi-compartment vehicle routing problem with flexible compartment sizes," European Journal of Operational Research, Elsevier, vol. 246(3), pages 730-743.
    14. Guilherme Baptista & Miguel Vieira & Telmo Pinto, 2024. "An Exact Approach to the Multi-Compartment Vehicle Routing Problem: The Case of a Fuel Distribution Company," Mathematics, MDPI, vol. 12(4), pages 1-14, February.
    15. Cornillier, Fabien & Boctor, Fayez F. & Laporte, Gilbert & Renaud, Jacques, 2008. "A heuristic for the multi-period petrol station replenishment problem," European Journal of Operational Research, Elsevier, vol. 191(2), pages 295-305, December.
    16. Pasquale Carotenuto & Stefano Giordani & Alessio Salvatore, 2024. "A Matheuristic Approach for the Multi-Depot Periodic Petrol Station Replenishment Problem," Mathematics, MDPI, vol. 12(3), pages 1-19, January.
    17. Heßler, Katrin, 2021. "Exact algorithms for the multi-compartment vehicle routing problem with flexible compartment sizes," European Journal of Operational Research, Elsevier, vol. 294(1), pages 188-205.
    18. Muyldermans, L. & Pang, G., 2010. "On the benefits of co-collection: Experiments with a multi-compartment vehicle routing algorithm," European Journal of Operational Research, Elsevier, vol. 206(1), pages 93-103, October.
    19. Guy Desaulniers & François Lessard & Ahmed Hadjar, 2008. "Tabu Search, Partial Elementarity, and Generalized k -Path Inequalities for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 42(3), pages 387-404, August.
    20. Li, Kunpeng & Chen, Bin & Sivakumar, Appa Iyer & Wu, Yong, 2014. "An inventory–routing problem with the objective of travel time minimization," European Journal of Operational Research, Elsevier, vol. 236(3), pages 936-945.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:311:y:2023:i:1:p:154-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.