IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v266y2015icp12-20.html
   My bibliography  Save this article

Augmented Lagrangian method within L-shaped method for stochastic linear programs

Author

Listed:
  • Ketabchi, Saeed
  • Behboodi-Kahoo, Malihe

Abstract

Stochastic programming is an optimization technique used in the presence of uncertainty and it typically leads to very large problem sizes. In this paper, a modified version of the L-shaped method was used to solve two-stage stochastic linear programs with recourse, based on the projection method and the augmented Lagrangian method. Using this modified version of the L-shaped method allows us to reduce the number of iterations and the time of solving a two-stage stochastic linear program with fixed recourse, in comparison with traditional methods.

Suggested Citation

  • Ketabchi, Saeed & Behboodi-Kahoo, Malihe, 2015. "Augmented Lagrangian method within L-shaped method for stochastic linear programs," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 12-20.
  • Handle: RePEc:eee:apmaco:v:266:y:2015:i:c:p:12-20
    DOI: 10.1016/j.amc.2015.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315006232
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    2. J. Abaffy & E. Allevi, 2004. "A Modified L-Shaped Method," Journal of Optimization Theory and Applications, Springer, vol. 123(2), pages 255-270, November.
    3. George B. Dantzig, 1955. "Linear Programming under Uncertainty," Management Science, INFORMS, vol. 1(3-4), pages 197-206, 04-07.
    4. Julia L. Higle & Suvrajeet Sen, 1991. "Stochastic Decomposition: An Algorithm for Two-Stage Linear Programs with Recourse," Mathematics of Operations Research, INFORMS, vol. 16(3), pages 650-669, August.
    5. O. L. Mangasarian, 2004. "A Newton Method for Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 121(1), pages 1-18, April.
    6. John R. Birge, 1985. "Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs," Operations Research, INFORMS, vol. 33(5), pages 989-1007, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Edirisinghe & E. Patterson, 2007. "Multi-period stochastic portfolio optimization: Block-separable decomposition," Annals of Operations Research, Springer, vol. 152(1), pages 367-394, July.
    2. Fan, Wei, 2014. "Optimizing Strategic Allocation of Vehicles for One-Way Car-sharing Systems Under Demand Uncertainty," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 53(3).
    3. Fan, Wei & Machemehl, Randy, 2004. "A Multi-stage Monte Carlo Sampling Based Stochastic Programming Model for the Dynamic Vehicle Allocation Problem," 45th Annual Transportation Research Forum, Evanston, Illinois, March 21-23, 2004 208244, Transportation Research Forum.
    4. Fei, Xin & Gülpınar, Nalân & Branke, Jürgen, 2019. "Efficient solution selection for two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 277(3), pages 918-929.
    5. A. Ruszczynski, 1994. "On Augmented Lagrangian Decomposition Methods For Multistage Stochastic Programs," Working Papers wp94005, International Institute for Applied Systems Analysis.
    6. Peter Kall & János Mayer, 2006. "Some insights into the solution algorithms for SLP problems," Annals of Operations Research, Springer, vol. 142(1), pages 147-164, February.
    7. Entriken, Robert & Infanger, Gerd, 1990. "5.2 Decomposition and importance sampling for stochastic linear models," Energy, Elsevier, vol. 15(7), pages 645-659.
    8. Martin Šmíd & Václav Kozmík, 2024. "Approximation of multistage stochastic programming problems by smoothed quantization," Review of Managerial Science, Springer, vol. 18(7), pages 2079-2114, July.
    9. Shapiro, Alexander, 2021. "Tutorial on risk neutral, distributionally robust and risk averse multistage stochastic programming," European Journal of Operational Research, Elsevier, vol. 288(1), pages 1-13.
    10. Ankur Kulkarni & Uday Shanbhag, 2012. "Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms," Computational Optimization and Applications, Springer, vol. 51(1), pages 77-123, January.
    11. Messina, E. & Mitra, G., 1997. "Modelling and analysis of multistage stochastic programming problems: A software environment," European Journal of Operational Research, Elsevier, vol. 101(2), pages 343-359, September.
    12. Wim Ackooij & Welington Oliveira & Yongjia Song, 2019. "On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 1-42, September.
    13. Richard W. Cottle, 2005. "George B. Dantzig: Operations Research Icon," Operations Research, INFORMS, vol. 53(6), pages 892-898, December.
    14. Diana Barro & Elio Canestrelli, 2005. "Time and nodal decomposition with implicit non-anticipativity constraints in dynamic portfolio optimization," GE, Growth, Math methods 0510011, University Library of Munich, Germany.
    15. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    16. Postek, Krzysztof & Romeijnders, Ward & den Hertog, Dick & van der Vlerk, Maartne H., 2016. "Efficient Methods for Several Classes of Ambiguous Stochastic Programming Problems under Mean-MAD Information," Other publications TiSEM a03f895f-b941-41a9-84e0-b, Tilburg University, School of Economics and Management.
    17. Thomas L. Magnanti, 2021. "Optimization: From Its Inception," Management Science, INFORMS, vol. 67(9), pages 5349-5363, September.
    18. Alexandra M. Newman & Martin Weiss, 2013. "A Survey of Linear and Mixed-Integer Optimization Tutorials," INFORMS Transactions on Education, INFORMS, vol. 14(1), pages 26-38, September.
    19. Song, Haiqing & Cheung, Raymond K. & Wang, Haiyan, 2014. "An arc-exchange decomposition method for multistage dynamic networks with random arc capacities," European Journal of Operational Research, Elsevier, vol. 233(3), pages 474-487.
    20. Postek, Krzysztof & Romeijnders, Ward & den Hertog, Dick & van der Vlerk, Maartne H., 2016. "Efficient Methods for Several Classes of Ambiguous Stochastic Programming Problems under Mean-MAD Information," Discussion Paper 2016-039, Tilburg University, Center for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:266:y:2015:i:c:p:12-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.