IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v33y2021i1p198-215.html
   My bibliography  Save this article

Computing Feasible Points of Bilevel Problems with a Penalty Alternating Direction Method

Author

Listed:
  • Thomas Kleinert

    (Department of Economics, Discrete Optimization, and Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; Energie Campus Nürnberg, Friedrich-Alexander-Universität, 90429 Nürnberg, Germany)

  • Martin Schmidt

    (Energie Campus Nürnberg, Friedrich-Alexander-Universität, 90429 Nürnberg, Germany; Department of Mathematics, Trier University, 54296 Trier, Germany)

Abstract

Bilevel problems are highly challenging optimization problems that appear in many applications of energy market design, critical infrastructure defense, transportation, pricing, and so on. Often these bilevel models are equipped with integer decisions, which makes the problems even harder to solve. Typically, in such a setting in mathematical optimization, one develops primal heuristics in order to obtain feasible points of good quality quickly or to enhance the search process of exact global methods. However, there are comparably few heuristics for bilevel problems. In this paper, we develop such a primal heuristic for bilevel problems with a mixed-integer linear or quadratic upper level and a linear or quadratic lower level. The heuristic is based on a penalty alternating direction method, which allows for a theoretical analysis. We derive a convergence theory stating that the method converges to a stationary point of an equivalent single-level reformulation of the bilevel problem and extensively test the method on a test set of more than 2,800 instances—which is one of the largest computational test sets ever used in bilevel programming. The study illustrates the very good performance of the proposed method in terms of both running times and solution quality. This renders the method a suitable subroutine in global bilevel solvers as well as a reasonable standalone approach. Summary of Contribution: Bilevel optimization problems form a very important class of optimization problems in the field of operations research, which is mainly due to their capability of modeling hierarchical decision processes. However, real-world bilevel problems are usually very hard to solve—especially in the case in which additional mixed-integer aspects are included in the modeling. Hence, the development of fast and reliable primal heuristics for this class of problems is very important. This paper presents such a method.

Suggested Citation

  • Thomas Kleinert & Martin Schmidt, 2021. "Computing Feasible Points of Bilevel Problems with a Penalty Alternating Direction Method," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 198-215, January.
  • Handle: RePEc:inm:orijoc:v:33:y:2021:i:1:p:198-215
    DOI: 10.1287/ijoc.2019.0945
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2019.0945
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2019.0945?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dussault, Jean-Pierre & Marcotte, Patrice & Roch, Sebastien & Savard, Gilles, 2006. "A smoothing heuristic for a bilevel pricing problem," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1396-1413, November.
    2. Georg Still, 2002. "Linear bilevel problems: Genericity results and an efficient method for computing local minima," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 55(3), pages 383-400, June.
    3. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2017. "A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs," Operations Research, INFORMS, vol. 65(6), pages 1615-1637, December.
    4. Grimm, Veronika & Martin, Alexander & Schmidt, Martin & Weibelzahl, Martin & Zöttl, Gregor, 2016. "Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes," European Journal of Operational Research, Elsevier, vol. 254(2), pages 493-509.
    5. Jochen Gorski & Frank Pfeuffer & Kathrin Klamroth, 2007. "Biconvex sets and optimization with biconvex functions: a survey and extensions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 373-407, December.
    6. Georg Still, 2002. "Linear bilevel problems: Genericity results and an efficient method for computing local minima," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 55(3), pages 383-400, June.
    7. Richard E. Wendell & Arthur P. Hurter, 1976. "Minimization of a Non-Separable Objective Function Subject to Disjoint Constraints," Operations Research, INFORMS, vol. 24(4), pages 643-657, August.
    8. Björn Geißler & Antonio Morsi & Lars Schewe & Martin Schmidt, 2018. "Solving Highly Detailed Gas Transport MINLPs: Block Separability and Penalty Alternating Direction Methods," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 309-323, May.
    9. Xinmin Hu & Daniel Ralph, 2007. "Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices," Operations Research, INFORMS, vol. 55(5), pages 809-827, October.
    10. Fischetti, Matteo & Monaci, Michele & Sinnl, Markus, 2018. "A dynamic reformulation heuristic for Generalized Interdiction Problems," European Journal of Operational Research, Elsevier, vol. 267(1), pages 40-51.
    11. Alberto Caprara & Margarida Carvalho & Andrea Lodi & Gerhard J. Woeginger, 2016. "Bilevel Knapsack with Interdiction Constraints," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 319-333, May.
    12. Gerald Brown & Matthew Carlyle & Javier Salmerón & Kevin Wood, 2006. "Defending Critical Infrastructure," Interfaces, INFORMS, vol. 36(6), pages 530-544, December.
    13. Daxhelet, O. & Smeers, Y., 2007. "The EU regulation on cross-border trade of electricity: A two-stage equilibrium model," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1396-1412, September.
    14. James T. Moore & Jonathan F. Bard, 1990. "The Mixed Integer Linear Bilevel Programming Problem," Operations Research, INFORMS, vol. 38(5), pages 911-921, October.
    15. Luce Brotcorne & Martine Labbé & Patrice Marcotte & Gilles Savard, 2001. "A Bilevel Model for Toll Optimization on a Multicommodity Transportation Network," Transportation Science, INFORMS, vol. 35(4), pages 345-358, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. Cambini & R. Riccardi & D. Scopelliti, 2023. "Solving linear multiplicative programs via branch-and-bound: a computational experience," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.
    2. Vieira, Matheus Pereira & Martins, André Christóvão Pio & Soler, Edilaine Martins & Balbo, Antonio Roberto & Nepomuceno, Leonardo, 2023. "Two-stage robust market clearing procedure model for day-ahead energy and reserve auctions of wind–thermal systems," Renewable Energy, Elsevier, vol. 218(C).
    3. Tahereh Khodamoradi & Maziar Salahi, 2023. "Extended mean-conditional value-at-risk portfolio optimization with PADM and conditional scenario reduction technique," Computational Statistics, Springer, vol. 38(2), pages 1023-1040, June.
    4. Yu-Wei Li & Gui-Hua Lin & Xide Zhu, 2024. "Solving Bilevel Programs Based on Lower-Level Mond-Weir Duality," INFORMS Journal on Computing, INFORMS, vol. 36(5), pages 1225-1241, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudio Contardo & Jorge A. Sefair, 2022. "A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 890-908, March.
    2. Ambrosius, Mirjam & Grimm, Veronika & Kleinert, Thomas & Liers, Frauke & Schmidt, Martin & Zöttl, Gregor, 2020. "Endogenous price zones and investment incentives in electricity markets: An application of multilevel optimization with graph partitioning," Energy Economics, Elsevier, vol. 92(C).
    3. Thomas Kleinert & Martine Labbé & Fr¨ank Plein & Martin Schmidt, 2020. "Technical Note—There’s No Free Lunch: On the Hardness of Choosing a Correct Big-M in Bilevel Optimization," Operations Research, INFORMS, vol. 68(6), pages 1716-1721, November.
    4. Fischetti, Matteo & Monaci, Michele & Sinnl, Markus, 2018. "A dynamic reformulation heuristic for Generalized Interdiction Problems," European Journal of Operational Research, Elsevier, vol. 267(1), pages 40-51.
    5. Juan S. Borrero & Leonardo Lozano, 2021. "Modeling Defender-Attacker Problems as Robust Linear Programs with Mixed-Integer Uncertainty Sets," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1570-1589, October.
    6. Andrea Baggio & Margarida Carvalho & Andrea Lodi & Andrea Tramontani, 2021. "Multilevel Approaches for the Critical Node Problem," Operations Research, INFORMS, vol. 69(2), pages 486-508, March.
    7. Liu, Shaonan & Wang, Mingzheng & Kong, Nan & Hu, Xiangpei, 2021. "An enhanced branch-and-bound algorithm for bilevel integer linear programming," European Journal of Operational Research, Elsevier, vol. 291(2), pages 661-679.
    8. Grimm, Veronika & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2017. "Uniqueness of market equilibrium on a network: A peak-load pricing approach," European Journal of Operational Research, Elsevier, vol. 261(3), pages 971-983.
    9. Martin Weibelzahl & Alexandra Märtz, 2020. "Optimal storage and transmission investments in a bilevel electricity market model," Annals of Operations Research, Springer, vol. 287(2), pages 911-940, April.
    10. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2019. "Interdiction Games and Monotonicity, with Application to Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 390-410, April.
    11. Jan Pablo Burgard & Carina Moreira Costa & Martin Schmidt, 2024. "Robustification of the k-means clustering problem and tailored decomposition methods: when more conservative means more accurate," Annals of Operations Research, Springer, vol. 339(3), pages 1525-1568, August.
    12. Krebs, Vanessa & Schewe, Lars & Schmidt, Martin, 2018. "Uniqueness and multiplicity of market equilibria on DC power flow networks," European Journal of Operational Research, Elsevier, vol. 271(1), pages 165-178.
    13. Leitner, Markus & Ljubić, Ivana & Monaci, Michele & Sinnl, Markus & Tanınmış, Kübra, 2023. "An exact method for binary fortification games," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1026-1039.
    14. Carina Moreira Costa & Dennis Kreber & Martin Schmidt, 2022. "An Alternating Method for Cardinality-Constrained Optimization: A Computational Study for the Best Subset Selection and Sparse Portfolio Problems," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2968-2988, November.
    15. Kübra Tanınmış & Markus Sinnl, 2022. "A Branch-and-Cut Algorithm for Submodular Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2634-2657, September.
    16. Junlong Zhang & Osman Y. Özaltın, 2021. "Bilevel Integer Programs with Stochastic Right-Hand Sides," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1644-1660, October.
    17. R. Paulavičius & C. S. Adjiman, 2020. "New bounding schemes and algorithmic options for the Branch-and-Sandwich algorithm," Journal of Global Optimization, Springer, vol. 77(2), pages 197-225, June.
    18. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    19. Birbil, S.I. & Bouza, G. & Frenk, J.B.G. & Still, G.J., 2003. "Equilibrium Constrained Optimization Problems," Econometric Institute Research Papers ERS-2003-085-LIS, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Moon, Kyungduk & Lee, Kangbok & Chopra, Sunil & Kwon, Steve, 2022. "Bilevel integer programming on a Boolean network for discovering critical genetic alterations in cancer development and therapy," European Journal of Operational Research, Elsevier, vol. 300(2), pages 743-754.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:33:y:2021:i:1:p:198-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.