IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v291y2021i2p661-679.html
   My bibliography  Save this article

An enhanced branch-and-bound algorithm for bilevel integer linear programming

Author

Listed:
  • Liu, Shaonan
  • Wang, Mingzheng
  • Kong, Nan
  • Hu, Xiangpei

Abstract

Bilevel integer linear programming (BILP) problems have been studied for decades. Many exact algorithms have been proposed in recent years for small- or medium-sized instances. However, few of these algorithms were shown to be efficient on large-sized instances. In this paper, we present an enhanced branch-and-bound algorithm for a class of BILP problems, which can discard a subspace from the search space in each iteration larger than that in a benchmark branch-and-bound algorithm. The corresponding enhanced branching rule can efficiently slow down the creation of new node problems so as to significantly reduce the computation time. Our scheme may be suboptimal if the lower-level problem is not unique optimal as the enhanced branching rule may discard bilevel feasible solutions that may turn out to be optimal to the bilevel programming. We present computational studies to evaluate the algorithm speedup and solution quality of our algorithm, compared with state-of-the-art algorithms from the literature on a large testbed of general BILP instances, some of which are still unsolved. The computational results show that our enhanced branching rule can achieve significant speedup on the benchmark branching rule with satisfying solution quality. In particular, our algorithm shows superior performance on large-sized BILP instances with a relatively complex lower-level problem.

Suggested Citation

  • Liu, Shaonan & Wang, Mingzheng & Kong, Nan & Hu, Xiangpei, 2021. "An enhanced branch-and-bound algorithm for bilevel integer linear programming," European Journal of Operational Research, Elsevier, vol. 291(2), pages 661-679.
  • Handle: RePEc:eee:ejores:v:291:y:2021:i:2:p:661-679
    DOI: 10.1016/j.ejor.2020.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720308614
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Dong & Chen, Mingyuan, 2006. "Capacitated plant selection in a decentralized manufacturing environment: A bilevel optimization approach," European Journal of Operational Research, Elsevier, vol. 169(1), pages 97-110, February.
    2. Dempe, Stephan & Kalashnikov, Vyacheslav V. & Pérez-Valdés, Gerardo A. & Kalashnykova, Nataliya I., 2011. "Natural gas bilevel cash-out problem: Convergence of a penalty function method," European Journal of Operational Research, Elsevier, vol. 215(3), pages 532-538, December.
    3. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2017. "A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs," Operations Research, INFORMS, vol. 65(6), pages 1615-1637, December.
    4. Florensa, Carlos & Garcia-Herreros, Pablo & Misra, Pratik & Arslan, Erdem & Mehta, Sanjay & Grossmann, Ignacio E., 2017. "Capacity planning with competitive decision-makers: Trilevel MILP formulation, degeneracy, and solution approaches," European Journal of Operational Research, Elsevier, vol. 262(2), pages 449-463.
    5. Dempe, Stephan & Kalashnikov, Vyacheslav & Rios-Mercado, Roger Z., 2005. "Discrete bilevel programming: Application to a natural gas cash-out problem," European Journal of Operational Research, Elsevier, vol. 166(2), pages 469-488, October.
    6. Ceylan, Halim & Bell, Michael G. H., 2004. "Traffic signal timing optimisation based on genetic algorithm approach, including drivers' routing," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 329-342, May.
    7. Jonathan F. Bard & James T. Moore, 1992. "An algorithm for the discrete bilevel programming problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(3), pages 419-435, April.
    8. Vyacheslav Kalashnikov & Gerardo Pérez & Nataliya Kalashnykova, 2010. "A linearization approach to solve the natural gas cash-out bilevel problem," Annals of Operations Research, Springer, vol. 181(1), pages 423-442, December.
    9. M. Hosein Zare & Juan S. Borrero & Bo Zeng & Oleg A. Prokopyev, 2019. "A note on linearized reformulations for a class of bilevel linear integer problems," Annals of Operations Research, Springer, vol. 272(1), pages 99-117, January.
    10. Leonardo Lozano & J. Cole Smith, 2017. "A Value-Function-Based Exact Approach for the Bilevel Mixed-Integer Programming Problem," Operations Research, INFORMS, vol. 65(3), pages 768-786, June.
    11. Alberto Caprara & Margarida Carvalho & Andrea Lodi & Gerhard J. Woeginger, 2016. "Bilevel Knapsack with Interdiction Constraints," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 319-333, May.
    12. Dajun Yue & Jiyao Gao & Bo Zeng & Fengqi You, 2019. "A projection-based reformulation and decomposition algorithm for global optimization of a class of mixed integer bilevel linear programs," Journal of Global Optimization, Springer, vol. 73(1), pages 27-57, January.
    13. James T. Moore & Jonathan F. Bard, 1990. "The Mixed Integer Linear Bilevel Programming Problem," Operations Research, INFORMS, vol. 38(5), pages 911-921, October.
    14. Luce Brotcorne & Martine Labbé & Patrice Marcotte & Gilles Savard, 2001. "A Bilevel Model for Toll Optimization on a Multicommodity Transportation Network," Transportation Science, INFORMS, vol. 35(4), pages 345-358, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faraz Salehi & S. Mohammad J. Mirzapour Al-E-Hashem & S. Mohammad Moattar Husseini & S. Hassan Ghodsypour, 2023. "A bi-level multi-follower optimization model for R&D project portfolio: an application to a pharmaceutical holding company," Annals of Operations Research, Springer, vol. 323(1), pages 331-360, April.
    2. Liu, Shaonan & Kong, Nan & Parikh, Pratik & Wang, Mingzheng, 2023. "Optimal trauma care network redesign with government subsidy: A bilevel integer programming approach," Omega, Elsevier, vol. 119(C).
    3. George Kozanidis & Eftychia Kostarelou, 2023. "An Exact Solution Algorithm for Integer Bilevel Programming with Application in Energy Market Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 573-607, May.
    4. Moon, Kyungduk & Lee, Kangbok & Chopra, Sunil & Kwon, Steve, 2022. "Bilevel integer programming on a Boolean network for discovering critical genetic alterations in cancer development and therapy," European Journal of Operational Research, Elsevier, vol. 300(2), pages 743-754.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Shaonan & Kong, Nan & Parikh, Pratik & Wang, Mingzheng, 2023. "Optimal trauma care network redesign with government subsidy: A bilevel integer programming approach," Omega, Elsevier, vol. 119(C).
    2. Leonardo Lozano & J. Cole Smith, 2017. "A Value-Function-Based Exact Approach for the Bilevel Mixed-Integer Programming Problem," Operations Research, INFORMS, vol. 65(3), pages 768-786, June.
    3. Claudio Contardo & Jorge A. Sefair, 2022. "A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 890-908, March.
    4. Dajun Yue & Jiyao Gao & Bo Zeng & Fengqi You, 2019. "A projection-based reformulation and decomposition algorithm for global optimization of a class of mixed integer bilevel linear programs," Journal of Global Optimization, Springer, vol. 73(1), pages 27-57, January.
    5. Junlong Zhang & Osman Y. Özaltın, 2021. "Bilevel Integer Programs with Stochastic Right-Hand Sides," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1644-1660, October.
    6. George Kozanidis & Eftychia Kostarelou, 2023. "An Exact Solution Algorithm for Integer Bilevel Programming with Application in Energy Market Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 573-607, May.
    7. Thomas Kleinert & Martin Schmidt, 2021. "Computing Feasible Points of Bilevel Problems with a Penalty Alternating Direction Method," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 198-215, January.
    8. Böttger, T. & Grimm, V. & Kleinert, T. & Schmidt, M., 2022. "The cost of decoupling trade and transport in the European entry-exit gas market with linear physics modeling," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1095-1111.
    9. Tanınmış, Kübra & Aras, Necati & Altınel, İ. Kuban, 2022. "Improved x-space algorithm for min-max bilevel problems with an application to misinformation spread in social networks," European Journal of Operational Research, Elsevier, vol. 297(1), pages 40-52.
    10. Geunyeong Byeon & Pascal Van Hentenryck, 2022. "Benders Subproblem Decomposition for Bilevel Problems with Convex Follower," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1749-1767, May.
    11. Rahman Khorramfar & Osman Y. Özaltın & Karl G. Kempf & Reha Uzsoy, 2022. "Managing Product Transitions: A Bilevel Programming Approach," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2828-2844, September.
    12. Leitner, Markus & Ljubić, Ivana & Monaci, Michele & Sinnl, Markus & Tanınmış, Kübra, 2023. "An exact method for binary fortification games," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1026-1039.
    13. Çalcı, Baturay & Leibowicz, Benjamin D. & Bard, Jonathan F. & Jayadev, Gopika G., 2024. "A bilevel approach to multi-period natural gas pricing and investment in gas-consuming infrastructure," Energy, Elsevier, vol. 303(C).
    14. Furini, Fabio & Ljubić, Ivana & Martin, Sébastien & San Segundo, Pablo, 2019. "The maximum clique interdiction problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 112-127.
    15. Kübra Tanınmış & Markus Sinnl, 2022. "A Branch-and-Cut Algorithm for Submodular Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2634-2657, September.
    16. Fakhry, Ramy & Hassini, Elkafi & Ezzeldin, Mohamed & El-Dakhakhni, Wael, 2022. "Tri-level mixed-binary linear programming: Solution approaches and application in defending critical infrastructure," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1114-1131.
    17. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2019. "Interdiction Games and Monotonicity, with Application to Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 390-410, April.
    18. Soares, Inês & Alves, Maria João & Henggeler Antunes, Carlos, 2021. "A deterministic bounding procedure for the global optimization of a bi-level mixed-integer problem," European Journal of Operational Research, Elsevier, vol. 291(1), pages 52-66.
    19. Fischetti, Matteo & Monaci, Michele & Sinnl, Markus, 2018. "A dynamic reformulation heuristic for Generalized Interdiction Problems," European Journal of Operational Research, Elsevier, vol. 267(1), pages 40-51.
    20. Kosmas, Daniel & Sharkey, Thomas C. & Mitchell, John E. & Maass, Kayse Lee & Martin, Lauren, 2023. "Interdicting restructuring networks with applications in illicit trafficking," European Journal of Operational Research, Elsevier, vol. 308(2), pages 832-851.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:291:y:2021:i:2:p:661-679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.