IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v20y2023i1d10.1007_s10287-023-00435-5.html
   My bibliography  Save this article

Why there is no need to use a big-M in linear bilevel optimization: a computational study of two ready-to-use approaches

Author

Listed:
  • Thomas Kleinert

    (Friedrich-Alexander-Universität Erlangen-Nürnberg, Discrete Optimization
    Energie Campus Nürnberg)

  • Martin Schmidt

    (Trier University)

Abstract

Linear bilevel optimization problems have gained increasing attention both in theory as well as in practical applications of Operations Research (OR) during the last years and decades. The latter is mainly due to the ability of this class of problems to model hierarchical decision processes. However, this ability makes bilevel problems also very hard to solve. Since no general-purpose solvers are available, a “best-practice” has developed in the applied OR community, in which not all people want to develop tailored algorithms but “just use” bilevel optimization as a modeling tool for practice. This best-practice is the big-M reformulation of the Karush–Kuhn–Tucker (KKT) conditions of the lower-level problem—an approach that has been shown to be highly problematic by Pineda and Morales (2019). Choosing invalid values for M yields solutions that may be arbitrarily bad. Checking the validity of the big-Ms is however shown to be as hard as solving the original bilevel problem in Kleinert et al. (2019). Nevertheless, due to its appealing simplicity, especially w.r.t. the required implementation effort, this ready-to-use approach still is the most popular method. Until now, there has been a lack of approaches that are competitive both in terms of implementation effort and computational cost. In this note we demonstrate that there is indeed another competitive ready-to-use approach: If the SOS-1 technique is applied to the KKT complementarity conditions, adding the simple additional root-node inequality developed by Kleinert et al. (2020) leads to a competitive performance—without having all the possible theoretical disadvantages of the big-M approach.

Suggested Citation

  • Thomas Kleinert & Martin Schmidt, 2023. "Why there is no need to use a big-M in linear bilevel optimization: a computational study of two ready-to-use approaches," Computational Management Science, Springer, vol. 20(1), pages 1-12, December.
  • Handle: RePEc:spr:comgts:v:20:y:2023:i:1:d:10.1007_s10287-023-00435-5
    DOI: 10.1007/s10287-023-00435-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-023-00435-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-023-00435-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Constante-Flores & A. J. Conejo & S. Constante-Flores, 2022. "Solving certain complementarity problems in power markets via convex programming," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 465-491, October.
    2. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2017. "A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs," Operations Research, INFORMS, vol. 65(6), pages 1615-1637, December.
    3. Paolo Pisciella & Marida Bertocchi & Maria Vespucci, 2016. "A leader-followers model of power transmission capacity expansion in a market driven environment," Computational Management Science, Springer, vol. 13(1), pages 87-118, January.
    4. Fischetti, Matteo & Monaci, Michele & Sinnl, Markus, 2018. "A dynamic reformulation heuristic for Generalized Interdiction Problems," European Journal of Operational Research, Elsevier, vol. 267(1), pages 40-51.
    5. Morales, Juan M. & Zugno, Marco & Pineda, Salvador & Pinson, Pierre, 2014. "Electricity market clearing with improved scheduling of stochastic production," European Journal of Operational Research, Elsevier, vol. 235(3), pages 765-774.
    6. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2019. "Interdiction Games and Monotonicity, with Application to Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 390-410, April.
    7. S. Siddiqui & S. Gabriel, 2013. "An SOS1-Based Approach for Solving MPECs with a Natural Gas Market Application," Networks and Spatial Economics, Springer, vol. 13(2), pages 205-227, June.
    8. Baringo, L. & Conejo, A.J., 2011. "Wind power investment within a market environment," Applied Energy, Elsevier, vol. 88(9), pages 3239-3247.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joaquim Dias Garcia & Guilherme Bodin & Alexandre Street, 2024. "BilevelJuMP.jl: Modeling and Solving Bilevel Optimization Problems in Julia," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 327-335, March.
    2. Jacquet, Quentin & van Ackooij, Wim & Alasseur, Clémence & Gaubert, Stéphane, 2024. "Quadratic regularization of bilevel pricing problems and application to electricity retail markets," European Journal of Operational Research, Elsevier, vol. 313(3), pages 841-857.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cerulli, Martina & Serra, Domenico & Sorgente, Carmine & Archetti, Claudia & Ljubić, Ivana, 2023. "Mathematical programming formulations for the Collapsed k-Core Problem," European Journal of Operational Research, Elsevier, vol. 311(1), pages 56-72.
    2. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    3. Liu, Shaonan & Kong, Nan & Parikh, Pratik & Wang, Mingzheng, 2023. "Optimal trauma care network redesign with government subsidy: A bilevel integer programming approach," Omega, Elsevier, vol. 119(C).
    4. Leitner, Markus & Ljubić, Ivana & Monaci, Michele & Sinnl, Markus & Tanınmış, Kübra, 2023. "An exact method for binary fortification games," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1026-1039.
    5. Pferschy, Ulrich & Nicosia, Gaia & Pacifici, Andrea & Schauer, Joachim, 2021. "On the Stackelberg knapsack game," European Journal of Operational Research, Elsevier, vol. 291(1), pages 18-31.
    6. Exizidis, Lazaros & Kazempour, S. Jalal & Pinson, Pierre & de Greve, Zacharie & Vallée, François, 2016. "Sharing wind power forecasts in electricity markets: A numerical analysis," Applied Energy, Elsevier, vol. 176(C), pages 65-73.
    7. Kübra Tanınmış & Markus Sinnl, 2022. "A Branch-and-Cut Algorithm for Submodular Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2634-2657, September.
    8. Thomas Kleinert & Martin Schmidt, 2021. "Computing Feasible Points of Bilevel Problems with a Penalty Alternating Direction Method," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 198-215, January.
    9. Holger Heitsch & René Henrion & Thomas Kleinert & Martin Schmidt, 2022. "On convex lower-level black-box constraints in bilevel optimization with an application to gas market models with chance constraints," Journal of Global Optimization, Springer, vol. 84(3), pages 651-685, November.
    10. Tanınmış, Kübra & Aras, Necati & Altınel, İ. Kuban, 2022. "Improved x-space algorithm for min-max bilevel problems with an application to misinformation spread in social networks," European Journal of Operational Research, Elsevier, vol. 297(1), pages 40-52.
    11. Claudio Contardo & Jorge A. Sefair, 2022. "A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 890-908, March.
    12. Kosmas, Daniel & Sharkey, Thomas C. & Mitchell, John E. & Maass, Kayse Lee & Martin, Lauren, 2023. "Interdicting restructuring networks with applications in illicit trafficking," European Journal of Operational Research, Elsevier, vol. 308(2), pages 832-851.
    13. Casorrán, Carlos & Fortz, Bernard & Labbé, Martine & Ordóñez, Fernando, 2019. "A study of general and security Stackelberg game formulations," European Journal of Operational Research, Elsevier, vol. 278(3), pages 855-868.
    14. Juan S. Borrero & Leonardo Lozano, 2021. "Modeling Defender-Attacker Problems as Robust Linear Programs with Mixed-Integer Uncertainty Sets," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1570-1589, October.
    15. Furini, Fabio & Ljubić, Ivana & San Segundo, Pablo & Zhao, Yanlu, 2021. "A branch-and-cut algorithm for the Edge Interdiction Clique Problem," European Journal of Operational Research, Elsevier, vol. 294(1), pages 54-69.
    16. Andrea Baggio & Margarida Carvalho & Andrea Lodi & Andrea Tramontani, 2021. "Multilevel Approaches for the Critical Node Problem," Operations Research, INFORMS, vol. 69(2), pages 486-508, March.
    17. Rintamäki, Tuomas & Siddiqui, Afzal S. & Salo, Ahti, 2016. "How much is enough? Optimal support payments in a renewable-rich power system," Energy, Elsevier, vol. 117(P1), pages 300-313.
    18. Gabriele Dragotto & Amine Boukhtouta & Andrea Lodi & Mehdi Taobane, 2024. "The critical node game," Journal of Combinatorial Optimization, Springer, vol. 47(5), pages 1-20, July.
    19. Rintamäki, Tuomas & Siddiqui, Afzal S. & Salo, Ahti, 2020. "Strategic offering of a flexible producer in day-ahead and intraday power markets," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1136-1153.
    20. Nascimento, Paulo Jorge & Silva, Cristóvão & Antunes, Carlos Henggeler & Moniz, Samuel, 2024. "Optimal decomposition approach for solving large nesting and scheduling problems of additive manufacturing systems," European Journal of Operational Research, Elsevier, vol. 317(1), pages 92-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:20:y:2023:i:1:d:10.1007_s10287-023-00435-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.