IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v55y2002i3p383-400.html
   My bibliography  Save this article

Linear bilevel problems: Genericity results and an efficient method for computing local minima

Author

Listed:
  • Georg Still

Abstract

The paper is concerned with linear bilevel problems. These nonconvex problems are known to be NP-complete. So, no theoretically efficient method for solving the global bilevel problem can be expected. In this paper we give a genericity analysis of linear bilevel problems and present a new algorithm for efficiently computing local minimizers. The method is based on the given structural analysis and combines ideas of the Simplex method with projected gradient steps. Copyright Springer-Verlag Berlin Heidelberg 2002

Suggested Citation

  • Georg Still, 2002. "Linear bilevel problems: Genericity results and an efficient method for computing local minima," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 55(3), pages 383-400, June.
  • Handle: RePEc:spr:mathme:v:55:y:2002:i:3:p:383-400
    DOI: 10.1007/s001860200189
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s001860200189
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s001860200189?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Birbil, S.I. & Bouza, G. & Frenk, J.B.G. & Still, G., 2006. "Equilibrium constrained optimization problems," European Journal of Operational Research, Elsevier, vol. 169(3), pages 1108-1127, March.
    2. Birbil, S.I. & Bouza, G. & Frenk, J.B.G. & Still, G.J., 2003. "Equilibrium Constrained Optimization Problems," Econometric Institute Research Papers ERS-2003-085-LIS, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Thomas Kleinert & Martin Schmidt, 2021. "Computing Feasible Points of Bilevel Problems with a Penalty Alternating Direction Method," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 198-215, January.
    4. Birbil, S.I. & Bouza, G. & Frenk, J.B.G. & Still, G.J., 2003. "Equilibrium Constrained Optimization Problems," ERIM Report Series Research in Management ERS-2003-085-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:55:y:2002:i:3:p:383-400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.