IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics0960148123011916.html
   My bibliography  Save this article

Two-stage robust market clearing procedure model for day-ahead energy and reserve auctions of wind–thermal systems

Author

Listed:
  • Vieira, Matheus Pereira
  • Martins, André Christóvão Pio
  • Soler, Edilaine Martins
  • Balbo, Antonio Roberto
  • Nepomuceno, Leonardo

Abstract

The progressive increase of clean and renewable energy sources is demanding new market policies and structures. Novel market clearing procedures (MCP) for day-ahead energy market are necessary to account for inherent uncertainties associated with these sources. In this paper we propose a novel two-stage robust MCP model for wind–thermal systems which co-optimizes energy and reserves, where the uncertainties in wind power sources (WPS) are handled by robust optimization and a detailed representation is adopted for thermal units, transmission system and reserves. An approach based on the dualization and Benders’ decomposition methods is proposed for solving the robust MCP model. Also, a model for simulating the impact of commitment decisions obtained by the MCP model is developed which evaluates the expected number/level of infeasibility in real time operation. This model allows for evaluating the effective real time security and reliability of the MCP decisions, associated with the uncertainties in WPS. The robust MCP approach is compared to the reserve adjustment approach generally adopted by system operators, using the IEEE 24-bus test system. The results have shown that the proposed robust approach assures higher levels of real time security and reliability, with just slight reductions in the social welfare function, even with high levels of wind power penetration.

Suggested Citation

  • Vieira, Matheus Pereira & Martins, André Christóvão Pio & Soler, Edilaine Martins & Balbo, Antonio Roberto & Nepomuceno, Leonardo, 2023. "Two-stage robust market clearing procedure model for day-ahead energy and reserve auctions of wind–thermal systems," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011916
    DOI: 10.1016/j.renene.2023.119276
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123011916
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119276?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin-gang, Zhao & Pei-ling, Li & Ying, Zhou, 2020. "Which policy can promote renewable energy to achieve grid parity? Feed-in tariff vs. renewable portfolio standards," Renewable Energy, Elsevier, vol. 162(C), pages 322-333.
    2. Alemzero, David & Acheampong, Theophilus & Huaping, Sun, 2021. "Prospects of wind energy deployment in Africa: Technical and economic analysis," Renewable Energy, Elsevier, vol. 179(C), pages 652-666.
    3. Shrimali, Gireesh & Konda, Charith & Farooquee, Arsalan Ali, 2016. "Designing renewable energy auctions for India: Managing risks to maximize deployment and cost-effectiveness," Renewable Energy, Elsevier, vol. 97(C), pages 656-670.
    4. de Mello Santana, Paulo Henrique, 2016. "Cost-effectiveness as energy policy mechanisms: The paradox of technology-neutral and technology-specific policies in the short and long term," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1216-1222.
    5. Afshar, Karim & Ghiasvand, Farshad Shamsini & Bigdeli, Nooshin, 2018. "Optimal bidding strategy of wind power producers in pay-as-bid power markets," Renewable Energy, Elsevier, vol. 127(C), pages 575-586.
    6. Nibedita, Barsha & Irfan, Mohd, 2022. "Analyzing the asymmetric impacts of renewables on wholesale electricity price: Empirical evidence from the Indian electricity market," Renewable Energy, Elsevier, vol. 194(C), pages 538-551.
    7. Johnston, Barry & Foley, Aoife & Doran, John & Littler, Timothy, 2020. "Levelised cost of energy, A challenge for offshore wind," Renewable Energy, Elsevier, vol. 160(C), pages 876-885.
    8. Welisch, Marijke, 2019. "Multi-unit renewables auctions for small markets - Designing the Danish multi-technology auction scheme," Renewable Energy, Elsevier, vol. 131(C), pages 372-380.
    9. Contreras, Javier & Rodríguez, Yeny E. & Sosa, Aníbal, 2017. "Construction of an efficient portfolio of power purchase decisions based on risk-diversification tradeoff," Energy Economics, Elsevier, vol. 64(C), pages 286-297.
    10. Jiang, Ruiwei & Zhang, Muhong & Li, Guang & Guan, Yongpei, 2014. "Two-stage network constrained robust unit commitment problem," European Journal of Operational Research, Elsevier, vol. 234(3), pages 751-762.
    11. Thomas Kleinert & Martin Schmidt, 2021. "Computing Feasible Points of Bilevel Problems with a Penalty Alternating Direction Method," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 198-215, January.
    12. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    13. Ozcan, Mustafa, 2021. "Renewable energy auctions in Turkey: Auction design based on stakeholder opinions," Renewable Energy, Elsevier, vol. 169(C), pages 473-484.
    14. Álvaro Lorca & X. Andy Sun & Eugene Litvinov & Tongxin Zheng, 2016. "Multistage Adaptive Robust Optimization for the Unit Commitment Problem," Operations Research, INFORMS, vol. 64(1), pages 32-51, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Sen & Hu, Weihao & Cao, Xilin & Du, Jialin & Zhao, Yincheng & Bai, Chunguang & Liu, Wen & Tang, Ming & Zhan, Wei & Chen, Zhe, 2024. "A two-stage robust low-carbon operation strategy for interconnected distributed energy systems considering source-load uncertainty," Applied Energy, Elsevier, vol. 368(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. del Río, Pablo & Kiefer, Christoph P., 2023. "Academic research on renewable electricity auctions: Taking stock and looking forward," Energy Policy, Elsevier, vol. 173(C).
    2. Qi, Mingyao & Yang, Ying & Cheng, Chun, 2023. "Location and inventory pre-positioning problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    3. Anatolitis, Vasilios & Azanbayev, Alina & Fleck, Ann-Katrin, 2022. "How to design efficient renewable energy auctions? Empirical insights from Europe," Energy Policy, Elsevier, vol. 166(C).
    4. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
    5. Yu, Xianyu & Ge, Shengxian & Zhou, Dequn & Wang, Qunwei & Chang, Ching-Ter & Sang, Xiuzhi, 2022. "Whether feed-in tariff can be effectively replaced or not? An integrated analysis of renewable portfolio standards and green certificate trading," Energy, Elsevier, vol. 245(C).
    6. Zhang, Gaohang & Li, Fengting & Wang, Sen & Yin, Chunya, 2023. "Robust low-carbon energy and reserve scheduling considering operational risk and flexibility improvement," Energy, Elsevier, vol. 284(C).
    7. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    8. Yıldıran, Uğur, 2023. "Robust multi-stage economic dispatch with renewable generation and storage," European Journal of Operational Research, Elsevier, vol. 309(2), pages 890-909.
    9. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    10. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    11. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    12. Chuong, T.D. & Jeyakumar, V., 2017. "Convergent hierarchy of SDP relaxations for a class of semi-infinite convex polynomial programs and applications," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 381-399.
    13. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    14. Dranichak, Garrett M. & Wiecek, Margaret M., 2019. "On highly robust efficient solutions to uncertain multiobjective linear programs," European Journal of Operational Research, Elsevier, vol. 273(1), pages 20-30.
    15. Md Altab Hossin & Shuwen Xiong & David Alemzero & Hermas Abudu, 2023. "Analyzing the Progress of China and the World in Achieving Sustainable Development Goals 7 and 13," Sustainability, MDPI, vol. 15(19), pages 1-16, September.
    16. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    17. Riza Radmehr & Samira Shayanmehr & Ernest Baba Ali & Elvis Kwame Ofori & Elżbieta Jasińska & Michał Jasiński, 2022. "Exploring the Nexus of Renewable Energy, Ecological Footprint, and Economic Growth through Globalization and Human Capital in G7 Economics," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    18. Shaoyun Hong & Haozhong Cheng & Pingliang Zeng, 2017. "An N - k Analytic Method of Composite Generation and Transmission with Interval Load," Energies, MDPI, vol. 10(2), pages 1-17, January.
    19. J. Behnamian & Z. Gharabaghli, 2023. "Multi-objective outpatient scheduling in health centers considering resource constraints and service quality: a robust optimization approach," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-35, March.
    20. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.