IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v31y2019i3p554-558.html
   My bibliography  Save this article

Real-Time Radiation Treatment Planning with Optimality Guarantees via Cluster and Bound Methods

Author

Listed:
  • Baris Ungun

    (Department of Bioengineering, Stanford University, Stanford, California 94305;)

  • Lei Xing

    (Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305;)

  • Stephen Boyd

    (Department of Electrical Engineering, Stanford University, Stanford, California 94305)

Abstract

Radiation therapy is widely used in cancer treatment; however, plans necessarily involve tradeoffs between tumor coverage and mitigating damage to healthy tissue. Although current hardware can deliver custom-shaped beams from any angle around the patient, choosing (from all possible beams) an optimal set of beams that maximizes tumor coverage while minimizing collateral damage and treatment time is intractable. Furthermore, even though planning algorithms used in practice consider highly restricted sets of candidate beams, the time per run combined with the number of runs required to explore clinical tradeoffs results in planning times of hours to days. We propose a suite of cluster and bound methods that we hypothesize will (1) yield higher-quality plans by optimizing over much (i.e., 100-fold) larger sets of candidate beams, and/or (2) reduce planning time by allowing clinicians to search through candidate plans in real time. Our methods hinge on phrasing the treatment-planning problem as a convex problem. To handle large-scale optimizations, we form and solve compressed approximations to the full problem by clustering beams (i.e., columns of the dose deposition matrix used in the optimization) or voxels (rows of the matrix). Duality theory allows us to bound the error incurred when applying an approximate problem’s solution to the full problem. We observe that beam clustering and voxel clustering both yield excellent solutions while enabling a 10- to 200-fold speedup.

Suggested Citation

  • Baris Ungun & Lei Xing & Stephen Boyd, 2019. "Real-Time Radiation Treatment Planning with Optimality Guarantees via Cluster and Bound Methods," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 544-558, July.
  • Handle: RePEc:inm:orijoc:v:31:y:2019:i:3:p:554-558
    DOI: 10.1287/ijoc.2018.0841
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2018.0841
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2018.0841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rasmus Bokrantz & Anders Forsgren, 2013. "An Algorithm for Approximating Convex Pareto Surfaces Based on Dual Techniques," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 377-393, May.
    2. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    3. Dimitris Bertsimas & Omid Nohadani & Kwong Meng Teo, 2010. "Nonconvex Robust Optimization for Problems with Constraints," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 44-58, February.
    4. Davaatseren Baatar & Natashia Boland & Robert Johnston & Horst W. Hamacher, 2009. "A New Sequential Extraction Heuristic for Optimizing the Delivery of Cancer Radiation Treatment Using Multileaf Collimators," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 224-241, May.
    5. Gino J. Lim & Michael C. Ferris & Stephen J. Wright & David M. Shepard & Matthew A. Earl, 2007. "An Optimization Framework for Conformal Radiation Treatment Planning," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 366-380, August.
    6. A. Y. D. Siem & D. den Hertog & A. L. Hoffmann, 2011. "A Method for Approximating Univariate Convex Functions Using Only Function Value Evaluations," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 591-604, November.
    7. Andreas T. Ernst & Vicky H. Mak & Luke R. Mason, 2009. "An Exact Method for the Minimum Cardinality Problem in the Treatment Planning of Intensity-Modulated Radiotherapy," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 562-574, November.
    8. Shabbir Ahmed & Ozan Gozbasi & Martin Savelsbergh & Ian Crocker & Tim Fox & Eduard Schreibmann, 2010. "An Automated Intensity-Modulated Radiation Therapy Planning System," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 568-583, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Chen & Yixin Lu & Liangfei Qiu & Subodha Kumar, 2021. "Designing Personalized Treatment Plans for Breast Cancer," Information Systems Research, INFORMS, vol. 32(3), pages 932-949, September.
    2. Kelsey Maass & Minsun Kim & Aleksandr Aravkin, 2022. "A Nonconvex Optimization Approach to IMRT Planning with Dose–Volume Constraints," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1366-1386, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Ehrgott & Çiğdem Güler & Horst Hamacher & Lizhen Shao, 2010. "Mathematical optimization in intensity modulated radiation therapy," Annals of Operations Research, Springer, vol. 175(1), pages 309-365, March.
    2. Luke Mason & Vicky Mak-Hau & Andreas Ernst, 2015. "A parallel optimisation approach for the realisation problem in intensity modulated radiotherapy treatment planning," Computational Optimization and Applications, Springer, vol. 60(2), pages 441-477, March.
    3. Lim, Gino J. & Bard, Jonathan F., 2016. "Benders decomposition and an IP-based heuristic for selecting IMRT treatment beam anglesAuthor-Name: Lin, Sifeng," European Journal of Operational Research, Elsevier, vol. 251(3), pages 715-726.
    4. Gabriele Eichfelder & Corinna Krüger & Anita Schöbel, 2017. "Decision uncertainty in multiobjective optimization," Journal of Global Optimization, Springer, vol. 69(2), pages 485-510, October.
    5. Danielle A. Ripsman & Thomas G. Purdie & Timothy C. Y. Chan & Houra Mahmoudzadeh, 2022. "Robust Direct Aperture Optimization for Radiation Therapy Treatment Planning," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2017-2038, July.
    6. Bennet Gebken & Sebastian Peitz, 2021. "Inverse multiobjective optimization: Inferring decision criteria from data," Journal of Global Optimization, Springer, vol. 80(1), pages 3-29, May.
    7. Adam N. Elmachtoub & Paul Grigas, 2022. "Smart “Predict, then Optimize”," Management Science, INFORMS, vol. 68(1), pages 9-26, January.
    8. Turgay Ayer & Can Zhang & Anthony Bonifonte & Anne C. Spaulding & Jagpreet Chhatwal, 2019. "Prioritizing Hepatitis C Treatment in U.S. Prisons," Operations Research, INFORMS, vol. 67(3), pages 853-873, May.
    9. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    10. Gabriele Eichfelder & Leo Warnow, 2022. "An approximation algorithm for multi-objective optimization problems using a box-coverage," Journal of Global Optimization, Springer, vol. 83(2), pages 329-357, June.
    11. Kelsey Maass & Minsun Kim & Aleksandr Aravkin, 2022. "A Nonconvex Optimization Approach to IMRT Planning with Dose–Volume Constraints," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1366-1386, May.
    12. J. Cole Smith, 2019. "In Memoriam: Shabbir Ahmed (1969–2019)," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 633-635, October.
    13. Roos, Ernst & den Hertog, Dick, 2019. "Reducing conservatism in robust optimization," Other publications TiSEM ad0238cd-de7a-4366-b487-b, Tilburg University, School of Economics and Management.
    14. Dursun, Pınar & Taşkın, Z. Caner & Altınel, İ. Kuban, 2019. "The determination of optimal treatment plans for Volumetric Modulated Arc Therapy (VMAT)," European Journal of Operational Research, Elsevier, vol. 272(1), pages 372-388.
    15. Breedveld, Sebastiaan & Craft, David & van Haveren, Rens & Heijmen, Ben, 2019. "Multi-criteria optimization and decision-making in radiotherapy," European Journal of Operational Research, Elsevier, vol. 277(1), pages 1-19.
    16. Roozbeh Qorbanian & Nils Lohndorf & David Wozabal, 2024. "Valuation of Power Purchase Agreements for Corporate Renewable Energy Procurement," Papers 2403.08846, arXiv.org.
    17. Angelo Ciccazzo & Vittorio Latorre & Giampaolo Liuzzi & Stefano Lucidi & Francesco Rinaldi, 2015. "Derivative-Free Robust Optimization for Circuit Design," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 842-861, March.
    18. Rishabh Gupta & Qi Zhang, 2022. "Decomposition and Adaptive Sampling for Data-Driven Inverse Linear Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2720-2735, September.
    19. Bengio, Yoshua & Lodi, Andrea & Prouvost, Antoine, 2021. "Machine learning for combinatorial optimization: A methodological tour d’horizon," European Journal of Operational Research, Elsevier, vol. 290(2), pages 405-421.
    20. Vusal Babashov & Antoine Sauré & Onur Ozturk & Jonathan Patrick, 2023. "Setting wait time targets in a multi‐priority patient setting," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1958-1974, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:31:y:2019:i:3:p:554-558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.