IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i3p1366-1386.html
   My bibliography  Save this article

A Nonconvex Optimization Approach to IMRT Planning with Dose–Volume Constraints

Author

Listed:
  • Kelsey Maass

    (Department of Applied Mathematics, University of Washington, Seattle, Washington 98195)

  • Minsun Kim

    (Department of Radiation Oncology, University of Washington, Seattle, Washington 98195)

  • Aleksandr Aravkin

    (Department of Applied Mathematics, University of Washington, Seattle, Washington 98195)

Abstract

Fluence map optimization for intensity-modulated radiation therapy planning can be formulated as a large-scale inverse problem with competing objectives and constraints associated with the tumors and organs at risk. Unfortunately, clinically relevant dose–volume constraints are nonconvex, so standard algorithms for convex problems cannot be directly applied. Although prior work focuses on convex approximations for these constraints, we propose a novel relaxation approach to handle nonconvex dose–volume constraints. We develop efficient, provably convergent algorithms based on partial minimization, and show how to adapt them to handle maximum-dose constraints and infeasible problems. We demonstrate our approach using the CORT data set and show that it is easily adaptable to radiation treatment planning with dose–volume constraints for multiple tumors and organs at risk. Summary of Contribution: This paper proposes a novel approach to deal with dose–volume constraints in radiation treatment planning optimization, which is inherently nonconvex, mixed-integer programming. The authors tackle this NP-hard problem using auxiliary variables and continuous optimization while preserving the problem’s nonconvexity. Algorithms to efficiently solve the nonconvex optimization problem presented in this paper yield computation speeds suitable for a busy clinical setting.

Suggested Citation

  • Kelsey Maass & Minsun Kim & Aleksandr Aravkin, 2022. "A Nonconvex Optimization Approach to IMRT Planning with Dose–Volume Constraints," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1366-1386, May.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:3:p:1366-1386
    DOI: 10.1287/ijoc.2021.1129
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.1129
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.1129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianjun Gao & Duan Li, 2013. "A polynomial case of the cardinality-constrained quadratic optimization problem," Journal of Global Optimization, Springer, vol. 56(4), pages 1441-1455, August.
    2. Ali Tuncel & Felisa Preciado & Ronald Rardin & Mark Langer & Jean-Philippe Richard, 2012. "Strong valid inequalities for fluence map optimization problem under dose-volume restrictions," Annals of Operations Research, Springer, vol. 196(1), pages 819-840, July.
    3. Shabbir Ahmed & Ozan Gozbasi & Martin Savelsbergh & Ian Crocker & Tim Fox & Eduard Schreibmann, 2010. "An Automated Intensity-Modulated Radiation Therapy Planning System," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 568-583, November.
    4. Miguel Lobo & Maryam Fazel & Stephen Boyd, 2007. "Portfolio optimization with linear and fixed transaction costs," Annals of Operations Research, Springer, vol. 152(1), pages 341-365, July.
    5. Baris Ungun & Lei Xing & Stephen Boyd, 2019. "Real-Time Radiation Treatment Planning with Optimality Guarantees via Cluster and Bound Methods," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 544-558, July.
    6. Matthias Ehrgott & Çiğdem Güler & Horst Hamacher & Lizhen Shao, 2010. "Mathematical optimization in intensity modulated radiation therapy," Annals of Operations Research, Springer, vol. 175(1), pages 309-365, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Wang & Hao Zeng & Jiashan Wang, 2022. "An extrapolated iteratively reweighted $$\ell _1$$ ℓ 1 method with complexity analysis," Computational Optimization and Applications, Springer, vol. 83(3), pages 967-997, December.
    2. Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.
    3. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    4. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    5. Nonthachote Chatsanga & Andrew J. Parkes, 2016. "International Portfolio Optimisation with Integrated Currency Overlay Costs and Constraints," Papers 1611.01463, arXiv.org.
    6. Danielle A. Ripsman & Thomas G. Purdie & Timothy C. Y. Chan & Houra Mahmoudzadeh, 2022. "Robust Direct Aperture Optimization for Radiation Therapy Treatment Planning," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2017-2038, July.
    7. Man Yiu Tsang & Tony Sit & Hoi Ying Wong, 2022. "Adaptive Robust Online Portfolio Selection," Papers 2206.01064, arXiv.org.
    8. Michele Costola & Bertrand Maillet & Zhining Yuan & Xiang Zhang, 2024. "Mean–variance efficient large portfolios: a simple machine learning heuristic technique based on the two-fund separation theorem," Annals of Operations Research, Springer, vol. 334(1), pages 133-155, March.
    9. Fatma Kılınç-Karzan, 2016. "On Minimal Valid Inequalities for Mixed Integer Conic Programs," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 477-510, May.
    10. Zhijun Xu & Jing Zhou, 2023. "A simultaneous diagonalization based SOCP relaxation for portfolio optimization with an orthogonality constraint," Computational Optimization and Applications, Springer, vol. 85(1), pages 247-261, May.
    11. Chunli Liu & Jianjun Gao, 2015. "A polynomial case of convex integer quadratic programming problems with box integer constraints," Journal of Global Optimization, Springer, vol. 62(4), pages 661-674, August.
    12. Wei Chen & Yixin Lu & Liangfei Qiu & Subodha Kumar, 2021. "Designing Personalized Treatment Plans for Breast Cancer," Information Systems Research, INFORMS, vol. 32(3), pages 932-949, September.
    13. Oylum S¸eker & Mucahit Cevik & Merve Bodur & Young Lee & Mark Ruschin, 2023. "A Multiobjective Approach for Sector Duration Optimization in Stereotactic Radiosurgery Treatment Planning," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 248-264, January.
    14. Salazar-González, Juan-José, 2021. "Designing optimal masks for a multi-object spectrometer," Omega, Elsevier, vol. 103(C).
    15. Yuichi Takano & Keisuke Nanjo & Noriyoshi Sukegawa & Shinji Mizuno, 2015. "Cutting plane algorithms for mean-CVaR portfolio optimization with nonconvex transaction costs," Computational Management Science, Springer, vol. 12(2), pages 319-340, April.
    16. Shraddha Ghatkar, 2019. "Optimization of fractionation schemes and beamlet intensities in intensity-modulated radiation therapy with changing cancer tumor properties," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 46(4), pages 385-407, December.
    17. Nikita Boyko & Timofey Turko & Vladimir Boginski & David E. Jeffcoat & Stanislav Uryasev & Grigoriy Zrazhevsky & Panos M. Pardalos, 2011. "Robust multi-sensor scheduling for multi-site surveillance," Journal of Combinatorial Optimization, Springer, vol. 22(1), pages 35-51, July.
    18. Giorgio Arici & Marco Dalai & Riccardo Leonardi & Arnaldo Spalvieri, 2018. "A Communication Theoretic Interpretation of Modern Portfolio Theory Including Short Sales, Leverage and Transaction Costs," JRFM, MDPI, vol. 12(1), pages 1-11, December.
    19. Haoran Wang & Shi Yu, 2021. "Robo-Advising: Enhancing Investment with Inverse Optimization and Deep Reinforcement Learning," Papers 2105.09264, arXiv.org.
    20. Martijn H. H. Schoot Uiterkamp & Marco E. T. Gerards & Johann L. Hurink, 2022. "On a Reduction for a Class of Resource Allocation Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1387-1402, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:3:p:1366-1386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.