IDEAS home Printed from https://ideas.repec.org/p/aeg/wpaper/2012-5.html
   My bibliography  Save this paper

An Exact Algorithm for Quadratic Integer Minimization using Nonconvex Relaxations

Author

Listed:
  • Christoph Buchheim

    (Fakultat fur Mathematik, TU Dortmund)

  • Marianna De Santis

    (Istituto di Analisi dei Sistemi e Informatica Antonio Ruberti – IASI CNR Roma)

  • Laura Palagi

    (Department of Computer, Control, and Management Engineering Antonio Ruberti Sapienza Universita di Roma)

  • Mauro Piacentini

    (Department of Computer, Control, and Management Engineering Antonio Ruberti Sapienza Universita di Roma)

Abstract

We propose a branch-and-bound algorithm for minimizing a not necessarily convex quadratic function over integer variables. The algorithm is based on lower bounds computed as continuous minima of the objective function over appropriate ellipsoids. In the nonconvex case, we use ellipsoids enclosing the feasible region of the problem. In spite of the nonconvexity, these minima can be computed quickly. We present several ideas that allow to accelerate the solution of the continuous relaxation within a branch-and-bound scheme and examine the performance of the overall algorithm by computational experiments.

Suggested Citation

  • Christoph Buchheim & Marianna De Santis & Laura Palagi & Mauro Piacentini, 2012. "An Exact Algorithm for Quadratic Integer Minimization using Nonconvex Relaxations," DIS Technical Reports 2012-05, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
  • Handle: RePEc:aeg:wpaper:2012-5
    as

    Download full text from publisher

    File URL: http://www.dis.uniroma1.it/~bibdis/RePEc/aeg/wpaper/2012-05.pdf
    File Function: First version, 2012
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laura Palagi & Veronica Piccialli & Franz Rendl & Giovanni Rinaldi & Angelika Wiegele, 2012. "Computational Approaches to Max-Cut," International Series in Operations Research & Management Science, in: Miguel F. Anjos & Jean B. Lasserre (ed.), Handbook on Semidefinite, Conic and Polynomial Optimization, chapter 0, pages 821-847, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Buchheim & Emiliano Traversi, 2018. "Quadratic Combinatorial Optimization Using Separable Underestimators," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 424-437, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weber, Shlomo & Castaneda Dower, Paul & Gokmen, Gunes & Le Breton, Michel, 2021. "Did the Cold War Produce Development Clusters in Africa?," CEPR Discussion Papers 15810, C.E.P.R. Discussion Papers.
    2. Christoph Buchheim & Emiliano Traversi, 2018. "Quadratic Combinatorial Optimization Using Separable Underestimators," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 424-437, August.
    3. Timotej Hrga & Janez Povh, 2021. "MADAM: a parallel exact solver for max-cut based on semidefinite programming and ADMM," Computational Optimization and Applications, Springer, vol. 80(2), pages 347-375, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aeg:wpaper:2012-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Antonietta Angelica Zucconi (email available below). General contact details of provider: https://edirc.repec.org/data/dirosit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.