IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v91y2025i1d10.1007_s10898-024-01432-x.html
   My bibliography  Save this article

Stochastic decomposition for risk-averse two-stage stochastic linear programs

Author

Listed:
  • Prasad Parab

    (Texas A&M University)

  • Lewis Ntaimo

    (Texas A&M University)

  • Bernardo Pagnoncelli

    (Université Côte d’Azur)

Abstract

Two-stage risk-averse stochastic programming goes beyond the classical expected value framework and aims at controlling the variability of the cost associated with different outcomes based on a choice of a risk measure. In this paper, we study stochastic decomposition (SD) for solving large-scale risk-averse stochastic linear programs with deviation and quantile risk measures. Large-scale problems refer to instances involving too many outcomes to handle using a direct solver, requiring the use of sampling approaches. SD follows an internal sampling approach in which only one sample is randomly generated at each iteration of the algorithm and has been successful for the risk-neutral setting. We extend SD to the risk-averse setting and establish asymptotic convergence of the algorithm to an optimal solution if one exists. A salient feature of the SD algorithm is that the number of samples is not fixed a priori, which allows obtaining good candidate solutions using a relatively small number of samples. We derive two variations of the SD algorithm, one with a single cut (Single-Cut SD) to approximate both the expected recourse function and dispersion statistic, and the other with two separate cuts (Separate-Cut SD). We report on a computational study based on standard test instances to evaluate the empirical performance of the SD algorithms in the risk-averse setting. The study shows that both SD algorithms require a relatively small number of scenarios to converge to an optimal solution. In addition, the comparative performance of the Single-Cut and Separate-Cut SD algorithms is problem-dependent.

Suggested Citation

  • Prasad Parab & Lewis Ntaimo & Bernardo Pagnoncelli, 2025. "Stochastic decomposition for risk-averse two-stage stochastic linear programs," Journal of Global Optimization, Springer, vol. 91(1), pages 59-93, January.
  • Handle: RePEc:spr:jglopt:v:91:y:2025:i:1:d:10.1007_s10898-024-01432-x
    DOI: 10.1007/s10898-024-01432-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01432-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01432-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maciej Rysz & Alexander Vinel & Pavlo Krokhmal & Eduardo L. Pasiliao, 2015. "A Scenario Decomposition Algorithm for Stochastic Programming Problems with a Class of Downside Risk Measures," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 416-430, May.
    2. Trine Kristoffersen, 2005. "Deviation Measures in Linear Two-Stage Stochastic Programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 62(2), pages 255-274, November.
    3. Julia L. Higle & Suvrajeet Sen, 1991. "Stochastic Decomposition: An Algorithm for Two-Stage Linear Programs with Recourse," Mathematics of Operations Research, INFORMS, vol. 16(3), pages 650-669, August.
    4. Roberto Cominetti & Alfredo Torrico, 2016. "Additive Consistency of Risk Measures and Its Application to Risk-Averse Routing in Networks," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1510-1521, November.
    5. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    6. John M. Mulvey & Andrzej Ruszczyński, 1995. "A New Scenario Decomposition Method for Large-Scale Stochastic Optimization," Operations Research, INFORMS, vol. 43(3), pages 477-490, June.
    7. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    8. Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
    9. LeRoy, Stephen F, 1973. "Risk Aversion and the Martingale Property of Stock Prices," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(2), pages 436-446, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blanchot, Xavier & Clautiaux, François & Detienne, Boris & Froger, Aurélien & Ruiz, Manuel, 2023. "The Benders by batch algorithm: Design and stabilization of an enhanced algorithm to solve multicut Benders reformulation of two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 309(1), pages 202-216.
    2. Suvrajeet Sen & Yifan Liu, 2016. "Mitigating Uncertainty via Compromise Decisions in Two-Stage Stochastic Linear Programming: Variance Reduction," Operations Research, INFORMS, vol. 64(6), pages 1422-1437, December.
    3. Fengqi You & Ignacio Grossmann, 2013. "Multicut Benders decomposition algorithm for process supply chain planning under uncertainty," Annals of Operations Research, Springer, vol. 210(1), pages 191-211, November.
    4. Michael Freimer & Jeffrey Linderoth & Douglas Thomas, 2012. "The impact of sampling methods on bias and variance in stochastic linear programs," Computational Optimization and Applications, Springer, vol. 51(1), pages 51-75, January.
    5. Zhang, Nan & Jin, Zhuo & Li, Shuanming & Chen, Ping, 2016. "Optimal reinsurance under dynamic VaR constraint," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 232-243.
    6. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    7. Steve Zymler & Daniel Kuhn & Berç Rustem, 2013. "Worst-Case Value at Risk of Nonlinear Portfolios," Management Science, INFORMS, vol. 59(1), pages 172-188, July.
    8. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    9. Xiao, Helu & Zhou, Zhongbao & Ren, Teng & Liu, Wenbin, 2022. "Estimation of portfolio efficiency in nonconvex settings: A free disposal hull estimator with non-increasing returns to scale," Omega, Elsevier, vol. 111(C).
    10. Benati, S. & Conde, E., 2022. "A relative robust approach on expected returns with bounded CVaR for portfolio selection," European Journal of Operational Research, Elsevier, vol. 296(1), pages 332-352.
    11. Jiang, Chun-Fu & Peng, Hong-Yi & Yang, Yu-Kuan, 2016. "Tail variance of portfolio under generalized Laplace distribution," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 187-203.
    12. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.
    13. Xiaotie Chen & David L. Woodruff, 2024. "Distributions and bootstrap for data-based stochastic programming," Computational Management Science, Springer, vol. 21(1), pages 1-21, June.
    14. Fonseca, Raquel J. & Rustem, Berç, 2012. "International portfolio management with affine policies," European Journal of Operational Research, Elsevier, vol. 223(1), pages 177-187.
    15. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    16. Pengyu Qian & Zizhuo Wang & Zaiwen Wen, 2015. "A Composite Risk Measure Framework for Decision Making under Uncertainty," Papers 1501.01126, arXiv.org.
    17. Maria Scutellà & Raffaella Recchia, 2013. "Robust portfolio asset allocation and risk measures," Annals of Operations Research, Springer, vol. 204(1), pages 145-169, April.
    18. Wim van Ackooij & Welington de Oliveira & Yongjia Song, 2018. "Adaptive Partition-Based Level Decomposition Methods for Solving Two-Stage Stochastic Programs with Fixed Recourse," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 57-70, February.
    19. Jörn Dunkel & Stefan Weber, 2010. "Stochastic Root Finding and Efficient Estimation of Convex Risk Measures," Operations Research, INFORMS, vol. 58(5), pages 1505-1521, October.
    20. Christa Cuchiero & Guido Gazzani & Irene Klein, 2022. "Risk measures under model uncertainty: a Bayesian viewpoint," Papers 2204.07115, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:91:y:2025:i:1:d:10.1007_s10898-024-01432-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.