IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v274y2019i1d10.1007_s10479-018-2900-5.html
   My bibliography  Save this article

Fix-and-optimize procedures for solving the long-term unit commitment problem with pumped storages

Author

Listed:
  • Alexander Franz

    (Clausthal University of Technology)

  • Julia Rieck

    (University of Hildesheim)

  • Jürgen Zimmermann

    (Clausthal University of Technology)

Abstract

In this paper, we consider a long-term unit commitment problem with thermal and renewable energy sources, where system operating costs have to be minimized. The problem is enhanced by adding pumped storages, where water is stored in reservoirs, being turbinated or pumped up if it is beneficial in terms of reducing the operating costs. We present a tight mixed-integer linear programming model with a redefinition of decision variables and a reformulation of constraints, e.g., for the spinning reserve. The model serves as a basis for a new decomposition method, where fix-and-optimize schemes are used. In particular, a time-oriented, a unit-oriented, and a generic fix-and-optimize procedure are presented. A computational performance analysis shows that the mixed-integer linear model is efficient in supporting the solution process for small- and medium-scale instances. Furthermore, the fix-and-optimize procedures are able to tackle even large-scale instances. Particularly, problem instances with real-world energy demands, power plant-specific characteristics, and a one-year planning horizon with hourly time steps are solved to near-optimality in reasonable time.

Suggested Citation

  • Alexander Franz & Julia Rieck & Jürgen Zimmermann, 2019. "Fix-and-optimize procedures for solving the long-term unit commitment problem with pumped storages," Annals of Operations Research, Springer, vol. 274(1), pages 241-265, March.
  • Handle: RePEc:spr:annopr:v:274:y:2019:i:1:d:10.1007_s10479-018-2900-5
    DOI: 10.1007/s10479-018-2900-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-2900-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-2900-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ralf Gollmer & Matthias Nowak & Werner Römisch & Rüdiger Schultz, 2000. "Unit commitment in power generation – a basic model and some extensions," Annals of Operations Research, Springer, vol. 96(1), pages 167-189, November.
    2. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    3. Wim Ackooij & Jérôme Malick, 2016. "Decomposition algorithm for large-scale two-stage unit-commitment," Annals of Operations Research, Springer, vol. 238(1), pages 587-613, March.
    4. Möst, Dominik & Keles, Dogan, 2010. "A survey of stochastic modelling approaches for liberalised electricity markets," European Journal of Operational Research, Elsevier, vol. 207(2), pages 543-556, December.
    5. Rieck, Julia & Ehrenberg, Carsten & Zimmermann, Jürgen, 2014. "Many-to-many location-routing with inter-hub transport and multi-commodity pickup-and-delivery," European Journal of Operational Research, Elsevier, vol. 236(3), pages 863-878.
    6. Niknam, Taher & Khodaei, Amin & Fallahi, Farhad, 2009. "A new decomposition approach for the thermal unit commitment problem," Applied Energy, Elsevier, vol. 86(9), pages 1667-1674, September.
    7. Christoph Weber, 2005. "Uncertainty in the Electric Power Industry," International Series in Operations Research and Management Science, Springer, number 978-0-387-23048-1, April.
    8. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    9. Helber, Stefan & Sahling, Florian, 2010. "A fix-and-optimize approach for the multi-level capacitated lot sizing problem," International Journal of Production Economics, Elsevier, vol. 123(2), pages 247-256, February.
    10. Wim Ackooij & Jérôme Malick, 2016. "Decomposition algorithm for large-scale two-stage unit-commitment," Annals of Operations Research, Springer, vol. 238(1), pages 587-613, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Yongqiu & Goverde, Rob M.P., 2020. "Integrated timetable rescheduling and passenger reassignment during railway disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 282-314.
    2. Alexander Franz & Julia Rieck & Jürgen Zimmermann, 2020. "A long-term unit commitment problem with hydrothermal coordination for economic and emission control in large-scale electricity systems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(1), pages 235-259, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Komorowska, Aleksandra & Benalcazar, Pablo & Kaszyński, Przemysław & Kamiński, Jacek, 2020. "Economic consequences of a capacity market implementation: The case of Poland," Energy Policy, Elsevier, vol. 144(C).
    2. Stephan Nagl & Michaela Fürsch & Dietmar Lindenberger, 2013. "The Costs of Electricity Systems with a High Share of Fluctuating Renewables: A Stochastic Investment and Dispatch Optimization Model for Europe," The Energy Journal, , vol. 34(4), pages 151-180, October.
    3. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    4. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
    5. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Clara Lage & Claudia Sagastizábal & Mikhail Solodov, 2020. "Multiplier Stabilization Applied to Two-Stage Stochastic Programs," Documents de travail du Centre d'Economie de la Sorbonne 20010, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    7. Feng, Chenjia & Shao, Chengcheng & Wang, Xifan, 2021. "CSP clustering in unit commitment for power system production cost modeling," Renewable Energy, Elsevier, vol. 168(C), pages 1217-1228.
    8. Keles, Dogan & Dehler-Holland, Joris, 2022. "Evaluation of photovoltaic storage systems on energy markets under uncertainty using stochastic dynamic programming," Energy Economics, Elsevier, vol. 106(C).
    9. Clara Lage & Claudia Sagastizábal & Mikhail Solodov, 2019. "Multiplier Stabilization Applied to Two-Stage Stochastic Programs," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 158-178, October.
    10. Coindreau, Marc-Antoine & Gallay, Olivier & Zufferey, Nicolas & Laporte, Gilbert, 2021. "Inbound and outbound flow integration for cross-docking operations," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1153-1163.
    11. Clara Lage & Claudia Sagastizábal & Mikhail Solodov, 2020. "Multiplier Stabilization Applied to Two-Stage Stochastic Programs," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02900862, HAL.
    12. W. Ackooij & A. Frangioni & W. Oliveira, 2016. "Inexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite support," Computational Optimization and Applications, Springer, vol. 65(3), pages 637-669, December.
    13. Hannes Schwarz & Valentin Bertsch & Wolf Fichtner, 2018. "Two-stage stochastic, large-scale optimization of a decentralized energy system: a case study focusing on solar PV, heat pumps and storage in a residential quarter," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 265-310, January.
    14. Wim van Ackooij & Welington de Oliveira & Yongjia Song, 2018. "Adaptive Partition-Based Level Decomposition Methods for Solving Two-Stage Stochastic Programs with Fixed Recourse," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 57-70, February.
    15. Clara Lage & Claudia Sagastizábal & Mikhail Solodov, 2020. "Multiplier Stabilization Applied to Two-Stage Stochastic Programs," Post-Print halshs-02900862, HAL.
    16. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    17. Pedro Borges, 2022. "Cut-sharing across trees and efficient sequential sampling for SDDP with uncertainty in the RHS," Computational Optimization and Applications, Springer, vol. 82(3), pages 617-647, July.
    18. Stephan Nagl, Michaela Fursch, and Dietmar Lindenberger, 2013. "The Costs of Electricity Systems with a High Share of Fluctuating Renewables: A Stochastic Investment and Dispatch Optimization Model for Europe," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    19. Keles, Dogan & Genoese, Massimo & Möst, Dominik & Fichtner, Wolf, 2012. "Comparison of extended mean-reversion and time series models for electricity spot price simulation considering negative prices," Energy Economics, Elsevier, vol. 34(4), pages 1012-1032.
    20. Wim Ackooij & Nicolas Lebbe & Jérôme Malick, 2017. "Regularized decomposition of large scale block-structured robust optimization problems," Computational Management Science, Springer, vol. 14(3), pages 393-421, July.

    More about this item

    Keywords

    Unit commitment problem; Pumped storages; Hydrothermal coordination; Volatile residual demand patterns; Mixed-integer linear programming model; Fix-and-optimize procedure;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:274:y:2019:i:1:d:10.1007_s10479-018-2900-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.